




Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii

1. MySQL Architecture and History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
MySQL’s Logical Architecture 1

Connection Management and Security 2
Optimization and Execution 3

Concurrency Control 3
Read/Write Locks 4
Lock Granularity 4

Transactions 6
Isolation Levels 7
Deadlocks 9
Transaction Logging 10
Transactions in MySQL 10

Multiversion Concurrency Control 12
MySQL’s Storage Engines 13

The InnoDB Engine 15
The MyISAM Engine 17
Other Built-in MySQL Engines 19
Third-Party Storage Engines 21
Selecting the Right Engine 24
Table Conversions 28

A MySQL Timeline 29
MySQL’s Development Model 33
Summary 34

2. Benchmarking MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Why Benchmark? 35
Benchmarking Strategies 37

iii



What to Measure 38
Benchmarking Tactics 40

Designing and Planning a Benchmark 41
How Long Should the Benchmark Last? 42
Capturing System Performance and Status 44
Getting Accurate Results 45
Running the Benchmark and Analyzing Results 47
The Importance of Plotting 49

Benchmarking Tools 50
Full-Stack Tools 51
Single-Component Tools 51

Benchmarking Examples 54
http_load 54
MySQL Benchmark Suite 55
sysbench 56
dbt2 TPC-C on the Database Test Suite 61
Percona’s TPCC-MySQL Tool 64

Summary 66

3. Profiling Server Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Introduction to Performance Optimization 69

Optimization Through Profiling 72
Interpreting the Profile 74

Profiling Your Application 75
Instrumenting PHP Applications 77

Profiling MySQL Queries 80
Profiling a Server’s Workload 80
Profiling a Single Query 84
Using the Profile for Optimization 91

Diagnosing Intermittent Problems 92
Single-Query Versus Server-Wide Problems 93
Capturing Diagnostic Data 97
A Case Study in Diagnostics 102

Other Profiling Tools 110
Using the USER_STATISTICS Tables 110
Using strace 111

Summary 112

4. Optimizing Schema and Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115
Choosing Optimal Data Types 115

Whole Numbers 117
Real Numbers 118
String Types 119

iv | Table of Contents



Date and Time Types 125
Bit-Packed Data Types 127
Choosing Identifiers 129
Special Types of Data 131

Schema Design Gotchas in MySQL 131
Normalization and Denormalization 133

Pros and Cons of a Normalized Schema 134
Pros and Cons of a Denormalized Schema 135
A Mixture of Normalized and Denormalized 136

Cache and Summary Tables 136
Materialized Views 138
Counter Tables 139

Speeding Up ALTER TABLE 141
Modifying Only the .frm File 142
Building MyISAM Indexes Quickly 143

Summary 145

5. Indexing for High Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Indexing Basics 147

Types of Indexes 148
Benefits of Indexes 158
Indexing Strategies for High Performance 159

Isolating the Column 159
Prefix Indexes and Index Selectivity 160
Multicolumn Indexes 163
Choosing a Good Column Order 165
Clustered Indexes 168
Covering Indexes 177
Using Index Scans for Sorts 182
Packed (Prefix-Compressed) Indexes 184
Redundant and Duplicate Indexes 185
Unused Indexes 187
Indexes and Locking 188

An Indexing Case Study 189
Supporting Many Kinds of Filtering 190
Avoiding Multiple Range Conditions 192
Optimizing Sorts 193

Index and Table Maintenance 194
Finding and Repairing Table Corruption 194
Updating Index Statistics 195
Reducing Index and Data Fragmentation 197

Summary 199

Table of Contents | v



6. Query Performance Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201
Why Are Queries Slow? 201
Slow Query Basics: Optimize Data Access 202

Are You Asking the Database for Data You Don’t Need? 202
Is MySQL Examining Too Much Data? 204

Ways to Restructure Queries 207
Complex Queries Versus Many Queries 207
Chopping Up a Query 208
Join Decomposition 209

Query Execution Basics 210
The MySQL Client/Server Protocol 210
The Query Cache 214
The Query Optimization Process 214
The Query Execution Engine 228
Returning Results to the Client 228

Limitations of the MySQL Query Optimizer 229
Correlated Subqueries 229
UNION Limitations 233
Index Merge Optimizations 234
Equality Propagation 234
Parallel Execution 234
Hash Joins 234
Loose Index Scans 235
MIN() and MAX() 237
SELECT and UPDATE on the Same Table 237

Query Optimizer Hints 238
Optimizing Specific Types of Queries 241

Optimizing COUNT() Queries 241
Optimizing JOIN Queries 244
Optimizing Subqueries 244
Optimizing GROUP BY and DISTINCT 244
Optimizing LIMIT and OFFSET 246
Optimizing SQL_CALC_FOUND_ROWS 248
Optimizing UNION 248
Static Query Analysis 249
Using User-Defined Variables 249

Case Studies 256
Building a Queue Table in MySQL 256
Computing the Distance Between Points 258
Using User-Defined Functions 262

Summary 263

vi | Table of Contents



7. Advanced MySQL Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
Partitioned Tables 265

How Partitioning Works 266
Types of Partitioning 267
How to Use Partitioning 268
What Can Go Wrong 270
Optimizing Queries 272
Merge Tables 273

Views 276
Updatable Views 278
Performance Implications of Views 279
Limitations of Views 280

Foreign Key Constraints 281
Storing Code Inside MySQL 282

Stored Procedures and Functions 284
Triggers 286
Events 288
Preserving Comments in Stored Code 289

Cursors 290
Prepared Statements 291

Prepared Statement Optimization 292
The SQL Interface to Prepared Statements 293
Limitations of Prepared Statements 294

User-Defined Functions 295
Plugins 297
Character Sets and Collations 298

How MySQL Uses Character Sets 298
Choosing a Character Set and Collation 301
How Character Sets and Collations Affect Queries 302

Full-Text Searching 305
Natural-Language Full-Text Searches 306
Boolean Full-Text Searches 308
Full-Text Changes in MySQL 5.1 310
Full-Text Tradeoffs and Workarounds 310
Full-Text Configuration and Optimization 312

Distributed (XA) Transactions 313
Internal XA Transactions 314
External XA Transactions 315

The MySQL Query Cache 315
How MySQL Checks for a Cache Hit 316
How the Cache Uses Memory 318
When the Query Cache Is Helpful 320
How to Configure and Maintain the Query Cache 323

Table of Contents | vii



InnoDB and the Query Cache 326
General Query Cache Optimizations 327
Alternatives to the Query Cache 328

Summary 329

8. Optimizing Server Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  331
How MySQL’s Configuration Works 332

Syntax, Scope, and Dynamism 333
Side Effects of Setting Variables 335
Getting Started 337
Iterative Optimization by Benchmarking 338

What Not to Do 340
Creating a MySQL Configuration File 342

Inspecting MySQL Server Status Variables 346
Configuring Memory Usage 347

How Much Memory Can MySQL Use? 347
Per-Connection Memory Needs 348
Reserving Memory for the Operating System 349
Allocating Memory for Caches 349
The InnoDB Buffer Pool 350
The MyISAM Key Caches 351
The Thread Cache 353
The Table Cache 354
The InnoDB Data Dictionary 356

Configuring MySQL’s I/O Behavior 356
InnoDB I/O Configuration 357
MyISAM I/O Configuration 369

Configuring MySQL Concurrency 371
InnoDB Concurrency Configuration 372
MyISAM Concurrency Configuration 373

Workload-Based Configuration 375
Optimizing for BLOB and TEXT Workloads 375
Optimizing for Filesorts 377

Completing the Basic Configuration 378
Safety and Sanity Settings 380
Advanced InnoDB Settings 383
Summary 385

9. Operating System and Hardware Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . .  387
What Limits MySQL’s Performance? 387
How to Select CPUs for MySQL 388

Which Is Better: Fast CPUs or Many CPUs? 388
CPU Architecture 390

viii | Table of Contents



Scaling to Many CPUs and Cores 391
Balancing Memory and Disk Resources 393

Random Versus Sequential I/O 394
Caching, Reads, and Writes 395
What’s Your Working Set? 395
Finding an Effective Memory-to-Disk Ratio 397
Choosing Hard Disks 398

Solid-State Storage 400
An Overview of Flash Memory 401
Flash Technologies 402
Benchmarking Flash Storage 403
Solid-State Drives (SSDs) 404
PCIe Storage Devices 406
Other Types of Solid-State Storage 407
When Should You Use Flash? 407
Using Flashcache 408
Optimizing MySQL for Solid-State Storage 410

Choosing Hardware for a Replica 414
RAID Performance Optimization 415

RAID Failure, Recovery, and Monitoring 417
Balancing Hardware RAID and Software RAID 418
RAID Configuration and Caching 419

Storage Area Networks and Network-Attached Storage 422
SAN Benchmarks 423
Using a SAN over NFS or SMB 424
MySQL Performance on a SAN 424
Should You Use a SAN? 425

Using Multiple Disk Volumes 427
Network Configuration 429
Choosing an Operating System 431
Choosing a Filesystem 432
Choosing a Disk Queue Scheduler 434
Threading 435
Swapping 436
Operating System Status 438

How to Read vmstat Output 438
How to Read iostat Output 440
Other Helpful Tools 441
A CPU-Bound Machine 442
An I/O-Bound Machine 443
A Swapping Machine 444
An Idle Machine 444

Summary 445

Table of Contents | ix



10. Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  447
Replication Overview 447

Problems Solved by Replication 448
How Replication Works 449

Setting Up Replication 451
Creating Replication Accounts 451
Configuring the Master and Replica 452
Starting the Replica 453
Initializing a Replica from Another Server 456
Recommended Replication Configuration 458

Replication Under the Hood 460
Statement-Based Replication 460
Row-Based Replication 460
Statement-Based or Row-Based: Which Is Better? 461
Replication Files 463
Sending Replication Events to Other Replicas 465
Replication Filters 466

Replication Topologies 468
Master and Multiple Replicas 468
Master-Master in Active-Active Mode 469
Master-Master in Active-Passive Mode 471
Master-Master with Replicas 473
Ring Replication 473
Master, Distribution Master, and Replicas 474
Tree or Pyramid 476
Custom Replication Solutions 477

Replication and Capacity Planning 482
Why Replication Doesn’t Help Scale Writes 483
When Will Replicas Begin to Lag? 484
Plan to Underutilize 485

Replication Administration and Maintenance 485
Monitoring Replication 485
Measuring Replication Lag 486
Determining Whether Replicas Are Consistent with the Master 487
Resyncing a Replica from the Master 488
Changing Masters 489
Switching Roles in a Master-Master Configuration 494

Replication Problems and Solutions 495
Errors Caused by Data Corruption or Loss 495
Using Nontransactional Tables 498
Mixing Transactional and Nontransactional Tables 498
Nondeterministic Statements 499
Different Storage Engines on the Master and Replica 500

x | Table of Contents



Data Changes on the Replica 500
Nonunique Server IDs 500
Undefined Server IDs 501
Dependencies on Nonreplicated Data 501
Missing Temporary Tables 502
Not Replicating All Updates 503
Lock Contention Caused by InnoDB Locking Selects 503
Writing to Both Masters in Master-Master Replication 505
Excessive Replication Lag 507
Oversized Packets from the Master 511
Limited Replication Bandwidth 511
No Disk Space 511
Replication Limitations 512

How Fast Is Replication? 512
Advanced Features in MySQL Replication 514
Other Replication Technologies 516
Summary 518

11. Scaling MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  521
What Is Scalability? 521

A Formal Definition 523
Scaling MySQL 527

Planning for Scalability 527
Buying Time Before Scaling 528
Scaling Up 529
Scaling Out 531
Scaling by Consolidation 547
Scaling by Clustering 548
Scaling Back 552

Load Balancing 555
Connecting Directly 556
Introducing a Middleman 560
Load Balancing with a Master and Multiple Replicas 564

Summary 565

12. High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  567
What Is High Availability? 567
What Causes Downtime? 568
Achieving High Availability 569

Improving Mean Time Between Failures 570
Improving Mean Time to Recovery 571

Avoiding Single Points of Failure 572
Shared Storage or Replicated Disk 573

Table of Contents | xi



Synchronous MySQL Replication 576
Replication-Based Redundancy 580

Failover and Failback 581
Promoting a Replica or Switching Roles 583
Virtual IP Addresses or IP Takeover 583
Middleman Solutions 584
Handling Failover in the Application 585

Summary 586

13. MySQL in the Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  589
Benefits, Drawbacks, and Myths of the Cloud 590
The Economics of MySQL in the Cloud 592
MySQL Scaling and HA in the Cloud 593
The Four Fundamental Resources 594
MySQL Performance in Cloud Hosting 595

Benchmarks for MySQL in the Cloud 598
MySQL Database as a Service (DBaaS) 600

Amazon RDS 600
Other DBaaS Solutions 602

Summary 602

14. Application-Level Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  605
Common Problems 605
Web Server Issues 608

Finding the Optimal Concurrency 609
Caching 611

Caching Below the Application 611
Application-Level Caching 612
Cache Control Policies 614
Cache Object Hierarchies 616
Pregenerating Content 617
The Cache as an Infrastructure Component 617
Using HandlerSocket and memcached Access 618

Extending MySQL 618
Alternatives to MySQL 619
Summary 620

15. Backup and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  621
Why Backups? 622
Defining Recovery Requirements 623
Designing a MySQL Backup Solution 624

Online or Offline Backups? 625
Logical or Raw Backups? 627

xii | Table of Contents



What to Back Up 629
Storage Engines and Consistency 632
Replication 634

Managing and Backing Up Binary Logs 634
The Binary Log Format 635
Purging Old Binary Logs Safely 636

Backing Up Data 637
Making a Logical Backup 637
Filesystem Snapshots 640

Recovering from a Backup 647
Restoring Raw Files 648
Restoring Logical Backups 649
Point-in-Time Recovery 652
More Advanced Recovery Techniques 653
InnoDB Crash Recovery 655

Backup and Recovery Tools 658
MySQL Enterprise Backup 658
Percona XtraBackup 658
mylvmbackup 659
Zmanda Recovery Manager 659
mydumper 659
mysqldump 660

Scripting Backups 661
Summary 664

16. Tools for MySQL Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  665
Interface Tools 665
Command-Line Utilities 666
SQL Utilities 667
Monitoring Tools 667

Open Source Monitoring Tools 668
Commercial Monitoring Systems 670
Command-Line Monitoring with Innotop 672

Summary 677

A. Forks and Variants of MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  679

B. MySQL Server Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

C. Transferring Large Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  715

D. Using EXPLAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  719

Table of Contents | xiii



E. Debugging Locks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  735

F. Using Sphinx with MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  745

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  771

xiv | Table of Contents



Foreword

I’ve been a fan of this book for years, and the third edition makes a great book even
better. Not only do world-class experts share that expertise, but they have taken the
time to update and add chapters with high-quality writing. While the book has many
details on getting high performance from MySQL, the focus of the book is on the pro-
cess of improvement rather than facts and trivia. This book will help you figure out
how to make things better, regardless of changes in MySQL’s behavior over time.

The authors are uniquely qualified to write this book, based on their experience, prin-
cipled approach, focus on efficiency, and commitment to improvement. By experi-
ence, I mean that the authors have been working on MySQL performance from the days
when it didn’t scale and had no instrumentation to the current period where things are
much better. By principled approach, I mean that they treat this like a science, first
defining problems to be solved and then using reason and measurement to solve those
problems.

I am most impressed by their focus on efficiency. As consultants, they don’t have the
luxury of time. Clients getting billed by the hour want problems solved quickly. So the
authors have defined processes and built tools to get things done correctly and effi-
ciently. They describe the processes in this book and publish source code for the tools.

Finally, they continue to get better at what they do. This includes a shift in concern
from throughput to response time, a commitment to understanding the performance
of MySQL on new hardware, and a pursuit of new skills like queueing theory that can
be used to understand performance.

I believe this book augurs a bright future for MySQL. As MySQL has evolved to support
demanding workloads, the authors have led a similar effort to improve the under-
standing of MySQL performance within the community. They have also contributed
directly to that improvement via XtraDB and XtraBackup. I continue to learn from them
and hope you take the time to do so as well.

—Mark Callaghan, Software Engineer, Facebook

xv



CHAPTER 8

Optimizing Server Settings

In this chapter, we’ll explain a process by which you can create a good configuration
file for your MySQL server. It is a roundabout trip, with many points of interest and
side trips to scenic overlooks. These are necessary, because determining the shortest
path to a good configuration doesn’t start with studying configuration options and
asking which ones you should set or how you should change them, nor does it start
with examining server behavior and asking whether any configuration options can im-
prove it. It’s best to begin with an understanding of MySQL’s internals and behavior.
You can then use that knowledge as a guide for how MySQL should be configured.
Finally, you can compare the desired configuration to the current configuration and
correct any differences that are important and worthwhile.

People often ask, “What’s the optimal configuration file for my server with 32 GB of
RAM and 12 CPU cores?” Unfortunately, it’s not that simple. The server should be
configured for the workload, data, and application requirements, not just the hardware.
MySQL has scores of settings that you can change—but you shouldn’t. It’s usually
better to configure the basic settings correctly (and there are only a few that really matter
in most cases) and spend more time on schema optimization, indexes, and query design.
After you’ve set MySQL’s basic configuration options correctly, the potential gains
from further changes are usually small.

On the other hand, the potential downside of fiddling with the configuration can be
great. We’ve seen more than one “highly tuned” server that was crashing constantly,
stalling, or performing slowly due to unwise settings. We’ll spend a bit of time on why
that can happen and what not to do.

So what should you do? Make sure the basics such as the InnoDB buffer pool and log
file size are appropriate, set a few safety and sanity options if you wish to prevent bad
behavior (but note that these usually won’t improve performance—they’ll only avoid
problems), and then leave the rest of the settings alone. If you begin to experience a
problem, diagnose it carefully with the techniques shown in Chapter 3. If the problem
is caused by a part of the server whose behavior can be corrected with a configuration
option, then you might need to change it.

331



Sometimes you might also need to set specific configuration options that can have a
significant performance impact in special cases. However, these should not be part of
a basic server configuration file. You should set them only when you find the specific
performance problems they address. That’s why we don’t suggest that you approach
configuration options by looking for bad things to improve. If something needs to be
improved, it should show up in query response times. It’s best to start your search with
queries and their response times, not with configuration options. This could save you
a lot of time and prevent many problems.

Another good way to save time and trouble is to use the defaults unless you know you
shouldn’t. There is safety in numbers, and a lot of people are running with default
settings. That makes them the most thoroughly tested settings. Unexpected bugs can
arise when you change things needlessly.

How MySQL’s Configuration Works
We’ll begin by explaining MySQL’s configuration mechanisms, before covering what
you should configure in MySQL. MySQL is generally pretty forgiving about its config-
uration, but following these suggestions might save you a lot of work and time.

The first thing to know is where MySQL gets configuration information: from
command-line arguments and settings in its configuration file. On Unix-like systems,
the configuration file is typically located at /etc/my.cnf or /etc/mysql/my.cnf. If you use
your operating system’s startup scripts, this is typically the only place you’ll specify
configuration settings. If you start MySQL manually, which you might do when you’re
running a test installation, you can also specify settings on the command line. The
server actually reads the contents of the configuration file, removes any comment lines
and newlines, and then processes it together with the command-line options.

A note on terminology: because many of MySQL’s command-line op-
tions correspond to server variables, we sometimes use the terms op-
tion and variable interchangeably. Most variables have the same names
as their corresponding command-line options, but there are a few ex-
ceptions. For example, --memlock sets the locked_in_memory variable.

Any settings you decide to use permanently should go into the global configuration
file, instead of being specified at the command line. Otherwise, you risk accidentally
starting the server without them. It’s also a good idea to keep all of your configuration
files in a single place so that you can inspect them easily.

Be sure you know where your server’s configuration file is located! We’ve seen people
try unsuccessfully to configure a server with a file it doesn’t read, such as /etc/my.cnf
on Debian servers, which look in /etc/mysql/my.cnf for their configuration. Sometimes

332 | Chapter 8: Optimizing Server Settings



there are files in several places, perhaps because a previous system administrator was
confused as well. If you don’t know which files your server reads, you can ask it:

$ which mysqld
/usr/sbin/mysqld
$ /usr/sbin/mysqld --verbose --help | grep -A 1 'Default options'
Default options are read from the following files in the given order:
/etc/mysql/my.cnf ~/.my.cnf /usr/etc/my.cnf

This applies to typical installations, where there’s a single server on a host. You can
design more complicated configurations, but there’s no standard way to do this. The
MySQL server distribution used to include a now-deprecated program called mysql-
manager, which can run multiple instances from a single configuration with separate
sections. (This was a replacement for the even older mysqld_multi script.) However,
many operating system distributions don’t include or use this program in their startup
scripts. In fact, many don’t use the MySQL-provided startup script at all.

The configuration file is divided into sections, each of which begins with a line that
contains the section name in square brackets. A MySQL program will generally read
the section that has the same name as that program, and many client programs also
read the client section, which gives you a place to put common settings. The server
usually reads the mysqld section. Be sure you place your settings in the correct section
in the file, or they will have no effect.

Syntax, Scope, and Dynamism
Configuration settings are written in all lowercase, with words separated by under-
scores or dashes. The following are equivalent, and you might see both forms in com-
mand lines and configuration files:

/usr/sbin/mysqld --auto-increment-offset=5
/usr/sbin/mysqld --auto_increment_offset=5

We suggest that you pick a style and use it consistently. This makes it easier to search
for settings in your files.

Configuration settings can have several scopes. Some settings are server-wide (global
scope); others are different for each connection (session scope); and others are per-
object. Many session-scoped variables have global equivalents, which you can think of
as defaults. If you change the session-scoped variable, it affects only the connection
from which you changed it, and the changes are lost when the connection closes. Here
are some examples of the variety of behaviors of which you should be aware:

• The query_cache_size variable is globally scoped.

• The sort_buffer_size variable has a global default, but you can set it per-session
as well.

How MySQL’s Configuration Works | 333



• The join_buffer_size variable has a global default and can be set per-session, but
a single query that joins several tables can allocate one join buffer per join, so there
might be several join buffers per query.

In addition to setting variables in the configuration files, you can also change many
(but not all) of them while the server is running. MySQL refers to these as dynamic
configuration variables. The following statements show different ways to change the
session and global values of sort_buffer_size dynamically:

SET           sort_buffer_size  = <value>;
SET GLOBAL    sort_buffer_size  = <value>;
SET         @@sort_buffer_size := <value>;
SET @@session.sort_buffer_size := <value>;
SET  @@global.sort_buffer_size := <value>;

If you set variables dynamically, be aware that those settings will be lost when MySQL
shuts down. If you want to keep the settings, you’ll have to update your configuration
file as well.

If you set a variable’s global value while the server is running, the values for the current
session and any other existing sessions are not affected. This is because the session
values are initialized from the global value when the connections are created. You
should inspect the output of SHOW GLOBAL VARIABLES after each change to make sure it’s
had the desired effect.

Variables use different kinds of units, and you have to know the correct unit for each
variable. For example, the table_cache variable specifies the number of tables that can
be cached, not the size of the table cache in bytes. The key_buffer_size is specified in
bytes, whereas still other variables are specified in number of pages or other units, such
as percentages.

Many variables can be specified with a suffix, such as 1M for one megabyte. However,
this works only in the configuration file or as a command-line argument. When you
use the SQL SET command, you must use the literal value 1048576, or an expression
such as 1024 * 1024. You can’t use expressions in configuration files.

There is also a special value you can assign to variables with the SET command: the
keyword DEFAULT. Assigning this value to a session-scoped variable sets that variable to
the corresponding globally scoped variable’s value; assigning it to a globally scoped
variable sets the variable to the compiled-in default (not the value specified in the con-
figuration file). This is useful for resetting session-scoped variables back to the values
they had when you opened the connection. We advise you not to use it for global
variables, because it probably won’t do what you want—that is, it doesn’t set the values
back to what they were when you started the server.

334 | Chapter 8: Optimizing Server Settings



Side Effects of Setting Variables
Setting variables dynamically can have unexpected side effects, such as flushing dirty
blocks from buffers. Be careful which settings you change online, because this can cause
the server to do a lot of work.

Sometimes you can infer a variable’s behavior from its name. For example, max_
heap_table_size does what it sounds like: it specifies the maximum size to which im-
plicit in-memory temporary tables are allowed to grow. However, the naming conven-
tions aren’t completely consistent, so you can’t always guess what a variable will do by
looking at its name.

Let’s take a look at some commonly used variables and the effects of changing them
dynamically:

key_buffer_size
Setting this variable allocates the designated amount of space for the key buffer (or
key cache) all at once. However, the operating system doesn’t actually commit
memory to it until it is used. Setting the key buffer size to one gigabyte, for example,
doesn’t mean you’ve instantly caused the server to actually commit a gigabyte of
memory to it. (We discuss how to watch the server’s memory usage in the next
chapter.)

MySQL lets you create multiple key caches, as we explain later in this chapter. If
you set this variable to 0 for a nondefault key cache, MySQL discards any indexes
cached in the specified cache, begins to cache them in the default cache, and deletes
the specified cache when nothing is using it anymore. Setting this variable for a
nonexistent cache creates it. Setting the variable to a nonzero value for an existing
cache will flush the specified cache’s memory. This blocks all operations that try
to access the cache until the flush is finished.

table_cache_size
Setting this variable has no immediate effect—the effect is delayed until the next
time a thread opens a table. When this happens, MySQL checks the variable’s
value. If the value is larger than the number of tables in the cache, the thread can
insert the newly opened table into the cache. If the value is smaller than the number
of tables in the cache, MySQL deletes unused tables from the cache.

thread_cache_size
Setting this variable has no immediate effect—the effect is delayed until the next
time a connection is closed. At that time, MySQL checks whether there is space in
the cache to store the thread. If so, it caches the thread for future reuse by another
connection. If not, it kills the thread instead of caching it. In this case, the number
of threads in the cache, and hence the amount of memory the thread cache uses,
does not immediately decrease; it decreases only when a new connection removes
a thread from the cache to use it. (MySQL adds threads to the cache only when
connections close and removes them from the cache only when new connections
are created.)

How MySQL’s Configuration Works | 335



query_cache_size
MySQL allocates and initializes the specified amount of memory for the query
cache all at once when the server starts. If you update this variable (even if you set
it to its current value), MySQL immediately deletes all cached queries, resizes the
cache to the specified size, and reinitializes the cache’s memory. This can take a
long time and stalls the server until it completes, because MySQL deletes all of the
cached queries one by one, not instantaneously.

read_buffer_size
MySQL doesn’t allocate any memory for this buffer until a query needs it, but then
it immediately allocates the entire chunk of memory specified here.

read_rnd_buffer_size
MySQL doesn’t allocate any memory for this buffer until a query needs it, and then
it allocates only as much memory as needed. (The name max_read_rnd
_buffer_size would describe this variable more accurately.)

sort_buffer_size
MySQL doesn’t allocate any memory for this buffer until a query needs to do a
sort. However, when there’s a sort, MySQL allocates the entire chunk of memory
immediately, whether the full size is required or not.

We explain what these variables do in more detail elsewhere, and this isn’t an exhaus-
tive list. Our goal here is simply to show you what behavior to expect when you change
a few common variables.

You should not raise the value of a per-connection setting globally unless you know it’s
the right thing to do. Some buffers are allocated all at once, even if they’re not needed,
so a large global setting can be a huge waste. Instead, you can raise the value when a
query needs it.

The most common example of a variable that you should probably keep small and raise
only for certain queries is sort_buffer_size, which controls how large the sort buffer
should be for filesorts. MySQL performs some work to initialize the sort buffer after
allocating it.

In addition, the sort buffer is allocated to its full size even for very small sorts, so if you
make it much larger than the average sort requires, you’ll be wasting memory and
adding allocation cost. This can be surprising to those readers who think of memory
allocation as an inexpensive operation. Without digging into all of the technical details,
it’s enough to say that memory allocation includes setting up the address space, which
can be relatively expensive; in Linux in particular, memory allocation uses a couple of
strategies with varying cost depending on the size.

In summary, a large sort buffer can be very expensive, so don’t increase its size unless
you know it’s needed.

336 | Chapter 8: Optimizing Server Settings



When you find a query that needs a larger sort buffer to perform well, you can raise the
sort_buffer_size value just before the query and then restore it to DEFAULT afterward.
Here’s an example of how to do this:

SET @@session.sort_buffer_size := <value>;
-- Execute the query...
SET @@session.sort_buffer_size := DEFAULT;

Wrapper functions can be handy for this type of code. Other variables you might set
on a per-connection basis are read_buffer_size, read_rnd_buffer_size, tmp_table
_size, and myisam_sort_buffer_size (if you’re repairing tables).

If you need to save and restore a possibly customized value, you can do something like
the following:

SET @saved_<unique_variable_name> := @@session.sort_buffer_size;
SET @@session.sort_buffer_size := <value>;
-- Execute the query...
SET @@session.sort_buffer_size := @saved_<unique_variable_name>;

The sort buffer size is one of the settings that is the focus of far too much
“tuning.” Some people seem to have the idea that bigger is better, and
we’ve even seen servers with this variable set to 1 GB. Perhaps not sur-
prisingly, this can cause the server to try to allocate too much memory
and crash, or simply to burn a lot of CPU time when initializing the sort
buffer for a query; see MySQL bug 37359 for more on this.

Don’t assign too much importance to the sort buffer size. Do you really
need your queries to allocate 128 MB of memory to sort 10 rows and
return them to the client? Think about what kinds of sorting your quer-
ies are doing, and how much, and try to avoid them with proper indexing
and query design (see Chapter 5 and Chapter 6) rather than trying to
make the sorting operation itself faster. And you should definitely pro-
file your queries to see whether sorting is where you should focus your
attention anyway; see Chapter 3 for an example of a query that performs
a sort but doesn’t spend much of its time sorting.

Getting Started
Be careful when setting variables. More is not always better, and if you set the values
too high, you can easily cause problems: you might run out of memory, causing your
server to swap, or run out of address space.1

1. A common mistake we’ve seen is to set up a server with twice as much memory as your existing server,
and—using the old server’s configuration as a baseline—create the new server’s configuration by
multiplying everything by two. This doesn’t work.

How MySQL’s Configuration Works | 337



You should always have a monitoring system in place to measure whether a change
improves or hurts your server’s overall performance in real life. Benchmarks aren’t
enough, because they’re not real. If you don’t measure your server’s actual perfor-
mance, you might hurt performance without knowing it. We’ve seen many cases where
someone changed a server’s configuration and thought it improved performance, when
in fact the server’s performance worsened overall because of a different workload at a
different time of day or day of the week.

If you take notes, perhaps with comments in the configuration file, you might save
yourself (and your colleagues) a lot of work. An even better idea is to place your con-
figuration file under version control. This is a good practice anyway, because it lets you
undo changes. To reduce the complexity of managing many configuration files, simply
create a symbolic link from the configuration file to a central version control repository.

Before you start changing your configuration, you should optimize your queries and
your schema, addressing at least the obvious things such as adding indexes. If you get
deep into tweaking the configuration and then change your queries or schema, you
might need to reevaluate the configuration. Keep in mind that unless your hardware,
workload, and data are completely static, chances are you’ll need to revisit your con-
figuration later. And in fact, most people’s servers don’t even have a steady workload
throughout the day—meaning that the “perfect” configuration for the middle of the
morning is not right for midafternoon! Obviously, chasing the mythical “perfect” con-
figuration is completely impractical. Thus, you don’t need to squeeze every last ounce
of performance out of your server; in fact, the return for such an investment of time
will probably be very small. We suggest that you stop at “good enough,” unless you
have reason to believe you’re forgoing a significant performance improvement.

Iterative Optimization by Benchmarking
You might be expected (or believe that you’re expected) to set up a benchmark suite
and “tune” your server by changing its configuration iteratively in search of optimal
settings. This usually is not something we advise most people to do. It requires so much
work and research, and the potential payoff is so small in most cases, that it can be a
huge waste of time. You are probably better off spending that time on other things such
as checking your backups, monitoring changes in query plans, and so on.

It’s also very hard to know what side effects your changes might have over the long run.
If you change an option and it appears to improve your benchmark, but your bench-
mark doesn’t measure everything that’s important, or you don’t run it long enough to
detect changes in the system’s long-term steady-state behavior, you might cause prob-
lems such as periodic server stalls or sporadic slow queries. These can be difficult to
detect.

338 | Chapter 8: Optimizing Server Settings



We do sometimes run sets of benchmarks to examine or stress particular parts of the
server so we can understand their behavior better. A good example is the many bench-
marks we’ve run over the years to understand InnoDB’s flushing behavior, in our quest
to develop better flushing algorithms for various workloads and types of hardware. It
often happens that we benchmark extensively with different settings to understand
their effects and how to optimize them. But this is not a small undertaking—it can take
many days or weeks—and it is also not beneficial for most people to do, because such
tunnel vision about a specific part of the server often obscures other concerns. For
example, sometimes we find that specific combinations of settings enable better per-
formance in edge cases, but the configuration options are not really practical for pro-
duction usage, due to factors such as wasting a huge amount of memory or optimizing
for throughput while ignoring the impact on crash recovery altogether.

If you must do this, we suggest that you develop a custom benchmark suite before you
begin configuring your server. You need something that represents your overall work-
load and includes edge cases such as very large and complex queries. Replaying your
actual workload against your actual data is usually a good approach. If you have iden-
tified a particular problem spot—such as a single query that runs slowly—you can also
try to optimize for that case, but you risk impacting other queries negatively without
knowing it.

The best way to proceed is to change one or two variables, a little at a time, and run
the benchmarks after each change, being sure to run them long enough to observe the
steady-state behavior. Sometimes the results will surprise you; you might increase a
variable a little and see an improvement, then increase it a little more and see a sharp
drop in performance. If performance suffers after a change, you might be asking for too
much of some resource, such as too much memory for a buffer that’s frequently allo-
cated and deallocated. You might also have created a mismatch between MySQL and
your operating system or hardware. For example, we’ve found that the optimal
sort_buffer_size might be affected by how the CPU cache works, and the read_
buffer_size needs to be matched to the server’s read-ahead and general I/O subsystem
configuration. Larger is not always better, and can be much worse. Some variables are
also dependent on others, which is something you learn with experience and by un-
derstanding the system’s architecture.

How MySQL’s Configuration Works | 339



When Benchmarking Is Good
There are exceptions to our advice not to benchmark. We sometimes do advise people
to run some iterative benchmarks, although usually in a different context than “server
tuning.” Here are some examples:

• If you’re approaching a large investment, such as purchasing a number of new
servers, you can run benchmarks to understand your hardware needs. (The context
here is capacity planning, not server tuning.) In particular, we like to run bench-
marks with different amounts of memory allocated to the InnoDB buffer pool,
which helps us draw a “memory curve” that shows how much memory is really
needed and how it impacts the demands on the storage systems.

• If you want to understand how long it will take InnoDB to recover from a crash,
you can repeatedly set up a replica, crash it intentionally, and “benchmark” how
long InnoDB takes to recover after restarting. The context here is for high availa-
bility planning.

• For read-mostly applications, it can be a great idea to capture all queries with the
slow query log (or from TCP traffic with pt-query-digest), use pt-log-player to replay
it against the server with full slow query logging enabled, and then analyze the
resulting log with pt-query-digest. This lets you see how various types of queries
perform with different hardware, software, and server settings. For example, we
once helped a customer assess the performance changes of a migration to a server
with much more memory, but with slower hard drives. Most queries became faster,
but some analytical queries slowed down because they remained I/O-bound. The
context of this exercise was workload comparison.

What Not to Do
Before we get started with server configuration, we want to encourage you to avoid a
few common practices that we’ve found to be risky or harmful. Warning: rants ahead!

First, you should not “tune by ratio.” The classic “tuning ratio” is the rule of thumb
that your key cache hit ratio should be higher than some percentage, and you should
increase the cache size if the hit rate is too low. This is very wrong advice. Regardless
of what anyone tells you, the cache hit ratio has nothing to do with whether the cache is
too large or too small. To begin with, the hit ratio depends on the workload—some
workloads simply aren’t cacheable no matter how big the cache is—and secondly,
cache hits are meaningless, for reasons we’ll explain later. It sometimes happens that
when the cache is too small, the hit rate is low, and increasing the cache size increases
the hit rate. However, this is an accidental correlation and does not indicate anything
about performance or proper sizing of the cache.

340 | Chapter 8: Optimizing Server Settings



The problem with correlations that sometimes appear to be true is that people begin
to believe they will always be true. Oracle DBAs abandoned ratio-based tuning years
ago, and we wish MySQL DBAs would follow their lead.2 We wish even more fervently
that people wouldn’t write “tuning scripts” that codify these dangerous practices and
teach them to thousands of people. This leads to our second suggestion of what not to
do: don’t use tuning scripts! There are several very popular ones that you can find on
the Internet. It’s probably best to ignore them.3

We also suggest that you avoid the word “tuning,” which we’ve used liberally in the
past few paragraphs. We favor “configuration” or “optimization” instead (as long as
that’s what you’re actually doing; see Chapter 3). The word “tuning” conjures up im-
ages of an undisciplined novice who tweaks the server and sees what happens. We
suggested in the previous section that this practice is best left to those who are re-
searching server internals. “Tuning” your server can be a stunning waste of time.

On a related topic, searching the Internet for configuration advice is not always a great
idea. You can find a lot of bad advice in blogs, forums, and so on.4 Although many
experts contribute what they know online, it is not always easy to tell who is qualified.
We can’t give unbiased recommendations about where to find real experts, of course.
But we can say that the credible, reputable MySQL service providers are a safer bet in
general than what a simple Internet search turns up, because people who have happy
customers are probably doing something right. Even their advice, however, can be
dangerous to apply without testing and understanding, because it might have been
directed at a situation that differed from yours in a way you don’t understand.

Finally, don’t believe the popular memory consumption formula—yes, the very one
that MySQL itself prints out when it crashes. (We won’t repeat it here.) This formula
is from an ancient time. It is not a reliable or even useful way to understand how much
memory MySQL can use in the worst case. You might see some variations on this
formula on the Internet, too. These are similarly flawed, even though they add in more
factors that the original formula doesn’t have. The truth is that you can’t put an upper
bound on MySQL’s memory consumption. It is not a tightly regulated database server
that controls memory allocation. You can prove that very simply by logging into the
server and running a number of queries that consume a lot of memory:

mysql> SET @crash_me_1 := REPEAT('a', @@max_allowed_packet);
mysql> SET @crash_me_2 := REPEAT('a', @@max_allowed_packet);

2. If you are not convinced that “tuning by ratio” is bad, please read Optimizing Oracle Performance by 
Cary Millsap (O’Reilly). He even devotes an appendix to the topic, with a tool that can artificially generate
any cache hit ratio you wish, no matter how badly your system is performing! Of course, it’s all for the
purpose of illustrating how useless the ratio is.

3. An exception: we maintain a (good) free online configuration tool at http://tools.percona.com. Yes, we’re
biased.

4. Q: How is query formed? A: They need to do way instain DBAs who kill thier querys, becuse these querys
cant frigth back?

What Not to Do | 341

http://tools.percona.com


# ... run a lot of these ...
mysql> SET @crash_me_1000000 := REPEAT('a', @@max_allowed_packet);

Run that in a loop, creating new variables each time, and you’ll eventually run the server
out of memory and crash it! And it requires no privileges to execute.

The points we’ve tried to illustrate in this section have sometimes made us unpopular
with people who perceive us as arrogant, think that we’re trying to discredit others and
set ourselves up as the sole authority, or feel that we’re trying to promote our services.
It is not our intention to be self-serving. We have simply seen so much bad advice that
appears legitimate if you are not experienced enough to know better, and helped clean
up the wreckage so many times, that we think it is important to debunk a few myths
and warn our readers to be careful whose expertise they trust. We’ll try to avoid ranting
from here on.

Creating a MySQL Configuration File
As we mentioned at the beginning of this chapter, we don’t have a one-size-fits-all “best
configuration file” for, say, a 4-CPU server with 16 GB of memory and 12 hard drives.
You really do need to develop your own configurations, because even a good starting
point will vary widely depending on how you’re using the server.

MySQL’s compiled-in default settings aren’t all great, although most of them are fine.
They are designed not to use a lot of resources, because MySQL is intended to be very
versatile, and it does not assume it is the only thing running on the server on which it
is installed. By default, MySQL uses just enough resources to start and run simple
queries with a little bit of data. You’ll certainly need to customize it if you have more
than a few megabytes of data.

You can start with one of the sample configuration files included with the MySQL server
distribution, but they have their own problems. For example, they have a lot of
commented-out settings that might tempt you to think that you should choose values
and uncomment them (it’s a bit reminiscent of an Apache configuration file). And they
have a lot of prose comments that explain the options, but these explanations are not
always well-balanced, complete, or even correct. Some of the options don’t even apply
to popular operating systems at all! Finally, the samples are perpetually out of date for
modern hardware and workloads.

MySQL experts have had many conversations about how to fix these problems over
the years, but the issues remain. Here’s our suggestion: don’t use those files as a starting
point, and don’t use the samples that ship with your operating system’s packages either.
It’s better to start from scratch.

That’s what we’ll do in this chapter. It’s actually a weakness that MySQL is so config-
urable, because it makes it seem as though you should spend a lot of time on configu-
ration, when in fact most things are fine at their defaults, and you are often better off
setting and forgetting. That’s why we’ve created a sane minimal sample configuration

342 | Chapter 8: Optimizing Server Settings



file for this book, which you can use as a good starting point for your own servers. You
must choose values for a few of the settings; we’ll explain those later in this chapter.
Our base file looks like this:

[mysqld]
# GENERAL
datadir                                  = /var/lib/mysql
socket                                   = /var/lib/mysql/mysql.sock
pid_file                                 = /var/lib/mysql/mysql.pid
user                                     = mysql
port                                     = 3306
storage_engine                           = InnoDB
# INNODB
innodb_buffer_pool_size                  = <value>
innodb_log_file_size                     = <value>
innodb_file_per_table                    = 1
innodb_flush_method                      = O_DIRECT
# MyISAM
key_buffer_size                          = <value>
# LOGGING
log_error                                = /var/lib/mysql/mysql-error.log
log_slow_queries                         = /var/lib/mysql/mysql-slow.log
# OTHER
tmp_table_size                           = 32M
max_heap_table_size                      = 32M
query_cache_type                         = 0
query_cache_size                         = 0
max_connections                          = <value>
thread_cache_size                        = <value>
table_cache_size                         = <value>
open_files_limit                         = 65535
[client]
socket                                   = /var/lib/mysql/mysql.sock
port                                     = 3306

This might seem too minimal in comparison to what you’re used to seeing,5 but it’s
actually more than many people need. There are a few other types of configuration
options that you are likely to use as well, such as binary logging; we’ll cover those later
in this and other chapters.

The first thing we configured is the location of the data. We chose /var/lib/mysql for
this, because it’s a popular location on many Unix variants. There is nothing wrong
with choosing another location; you decide. We’ve put the PID file into the same lo-
cation, but many operating systems will want to place it in /var/run instead. That’s fine,
too. We simply needed to have something configured for these settings. By the way,
don’t let the socket and PID file be located according to the server’s compiled-in de-
faults; there are some bugs in various MySQL versions that can cause problems with
this. It’s best to set these locations explicitly. (We’re not advising you to choose different

5. Question: where are the settings for the sort buffer size and read buffer size? Answer: they’re off minding
their own business. Leave them at their defaults unless you can prove the defaults are not good enough.

Creating a MySQL Configuration File | 343



locations; we’re just advising you to make sure the my.cnf file mentions those locations
explicitly, so they won’t change and break things if you upgrade the server.)

We also specified that mysqld should run as the mysql user account on the operating
system. You’ll need to make sure this account exists, and that it owns the data directory.
The port is set to the default of 3306, but sometimes that is something you’ll want to
change.

We’ve chosen the default storage engine to be InnoDB, and this is worth explaining.
We think InnoDB is the best choice in most situations, but that’s not always the case.
Some third-party software, for example, might assume the default is MyISAM, and will
create tables without specifying the engine. This might cause the software to malfunc-
tion if, for example, it assumes that it can create full-text indexes. And the default
storage engine is used for explicitly created temporary tables, too, which can cause
quite a bit of unexpected work for the server. If you want your permanent tables to use
InnoDB but any temporary tables to use MyISAM, you should be sure to specify the
engine explicitly in the CREATE TABLE statement.

In general, if you decide to use a storage engine as your default, it’s best to configure it
as the default. Many users think they use only a specific storage engine, but then dis-
cover another engine has crept into use because of the configured default.

We’ll illustrate the basics of configuration with InnoDB. All InnoDB really needs to run
well in most cases is a proper buffer pool size and log file size. The defaults are far too
small. All of the other settings for InnoDB are optional, although we’ve enabled
innodb_file_per_table for manageability and flexibility reasons. Setting the InnoDB
log file size is a topic that we’ll discuss later in this chapter, as is the setting of innodb
_flush_method, which is Unix-specific.

There’s a popular rule of thumb that says you should set the buffer pool size to around
75% or 80% of your server’s memory. This is another accidental ratio that seems to
work okay sometimes, but isn’t always correct. It’s a better idea to set the buffer pool
roughly as follows:

1. Begin with the amount of memory in the server.

2. Subtract out a bit for the operating system and perhaps for other programs, if
MySQL isn’t the only thing running on the server.

3. Subtract some more for MySQL’s memory needs; it uses various buffers for per-
query operations, for example.

4. Subtract enough for the InnoDB log files, so the operating system has enough
memory to cache them, or at least the recently accessed portion thereof. (This
advice applies to standard MySQL; in Percona Server, you can configure the log
files to be opened with O_DIRECT, bypassing the operating system caches.) It might
also be a good idea to leave some memory free for caching at least the tail of the
binary logs, especially if you have replicas that are delayed, because they can some-
times read old binary log files on the master, causing some pressure on its memory.

344 | Chapter 8: Optimizing Server Settings



5. Subtract enough for any other buffers and caches that you configure inside MySQL,
such as the MyISAM key cache or the query cache.

6. Divide by 105%, which is an approximation of the overhead InnoDB adds on to
manage the buffer pool itself.

7. Round the result down to a sensible number. Rounding down won’t change things
much, but overallocating can be a bad thing.

We were a bit blasé about some of the amounts of memory involved here—what
exactly is “a bit for the operating system,” anyway? That varies, and we’ll discuss it in
some depth later in this chapter and the rest of this book. You need to understand your
system and estimate how much memory you think it’ll need to run well. This is why
one-size-fits-all configuration files are not possible. Experience and sometimes a bit of
math will be your guide.

Here’s an example. Suppose you have a server with 192 GB of memory, and you want
to dedicate it to MySQL and to use only InnoDB, with no query cache and not very
many connections to the server. If your log files are 4 GB in total, you might proceed
as follows: “I think that 2 GB or 5% of overall memory, whichever is larger, should be
enough for the OS and for MySQL’s other memory needs; subtract 4 GB for the log
files; use everything else for InnoDB.” The result is about 177 GB, but it’s probably a
good idea to round that down a bit. You might configure the server with 168 GB or so
of buffer pool. If the server tends to run with a fair amount of unallocated memory in
practice, you might set the buffer pool larger when there is an opportunity to restart it
for some other purpose.

The result would be very different if you had a number of MyISAM tables and needed
to cache their indexes, naturally. It would also be quite different on Windows, which
has trouble using large amounts of memory in most MySQL versions (although it’s
improved in MySQL 5.5), or if you chose not to use O_DIRECT for some reason.

As you can see, it’s not crucial to get this setting precisely right from the beginning. It’s
better to start with a safe value that’s larger than the default but not as large as it could
be, run the server for a while, and see how much memory it really uses. These things
can be hard to anticipate, because MySQL’s memory usage isn’t always predictable: it
can depend on factors such as the query complexity and concurrency. With a simple
workload, MySQL’s memory needs are pretty minimal—around 256 KB per connec-
tion. But complex queries that use temporary tables, sorting, stored procedures, and
so forth can use a lot more RAM.

That’s why we chose a pretty safe starting point. You can see that even the conservative
setting for InnoDB’s buffer pool is actually 87.5% of the server’s installed RAM—more
than 75%, which is why we said that simple ratios aren’t the right approach.

We suggest that when it comes to configuring the memory buffers, you err on the side
of caution, rather than making them too large. If you make the buffer pool 20% smaller
than it could be, you’ll likely impact performance only a small amount—maybe a few

Creating a MySQL Configuration File | 345



percent. If you set it 20% too large, you’ll probably cause much more severe problems:
swapping, thrashing the disks, or even running out of memory and crashing hard.

This InnoDB configuration example illustrates our preferred approach to configuring
the server: understand what it does internally and how that interacts with the settings,
and then decide.

Time Changes Everything
The need to configure MySQL’s memory buffers precisely has become less important
over time. When a powerful server had 4 GB of memory, we worked hard to balance
its resources so it could run a thousand connections. This typically required us to re-
serve a gigabyte or so for MySQL’s needs, which was a quarter of the server’s total
memory and greatly influenced how we sized the buffer pool.

Nowadays a comparable server has 144 GB of memory, but we typically see about the
same number of connections in most applications, and the per-connection buffers
haven’t really changed much either. As a result, we might generously reserve 4 GB of
memory for MySQL, which is a drop in the bucket. It doesn’t impact how we size the
buffer pool very much.

Most of the other settings in our sample file are pretty self-explanatory, and many of
them are a matter of judgment. We’ll explore several of them in the rest of this chapter.
You can see that we’ve enabled logging, disabled the query cache, and so on. We’ll also
discuss some safety and sanity settings later in this chapter, which can be very helpful
for making your server more robust and helping prevent bad data and other problems.
We don’t show those settings here.

One setting to explain here is the open_files_limit option. We’ve set this as large as
possible on a typical Linux system. Open filehandles are very cheap on modern oper-
ating systems. If this setting isn’t large enough, you’ll see error 24, “too many open
files.”

Skipping all the way to the end, the last section in the configuration file is for client
programs such as mysql and mysqladmin, and simply lets them know how to connect
to the server. You should set the values for client programs to match those you chose
for the server.

Inspecting MySQL Server Status Variables
Sometimes you can use the output from SHOW GLOBAL STATUS as input to your configu-
ration to help customize the settings better for your workload. For the best results, look
both at absolute values and at how the values change over time, preferably with several
snapshots at peak and off-peak times. You can use the following command to see in-
cremental changes to status variables every 60 seconds:

$ mysqladmin extended-status -ri60

346 | Chapter 8: Optimizing Server Settings



We will frequently refer to changes in status variables over time as we explain various
configuration settings. We will usually expect you to be examining the output of a
command such as the one we just showed. Other helpful tools that can provide a
compact display of status counter changes are Percona Toolkit’s pt-mext or pt-mysql-
summary.

Now that we’ve shown you the preliminaries, we’ll take you on a guided tour of some
server internals, interleaved with advice on configuration. This will give you the back-
ground you’ll need to choose appropriate values for configuration options when we
return to the sample configuration file later.

Configuring Memory Usage
Configuring MySQL to use memory correctly is vital to good performance. You’ll al-
most certainly need to customize MySQL’s memory usage for your needs. You can
think of MySQL’s memory consumption as falling into two categories: the memory
you can control, and the memory you can’t. You can’t control how much memory
MySQL uses merely to run the server, parse queries, and manage its internals, but you
have a lot of control over how much memory it uses for specific purposes. Making good
use of the memory you can control is not hard, but it does require you to know what
you’re configuring.

As shown previously, you can approach memory configuration in steps:

1. Determine the absolute upper limit of memory MySQL can possibly use.

2. Determine how much memory MySQL will use for per-connection needs, such as
sort buffers and temporary tables.

3. Determine how much memory the operating system needs to run well. Include
memory for other programs that run on the same machine, such as periodic jobs.

4. Assuming that it makes sense to do so, use the rest of the memory for MySQL’s
caches, such as the InnoDB buffer pool.

We go over each of these steps in the following sections, and then we take a more
detailed look at the various MySQL caches’ requirements.

How Much Memory Can MySQL Use?
There is a hard upper limit on the amount of memory that can possibly be available to
MySQL on any given system. The starting point is the amount of physically installed
memory. If your server doesn’t have it, MySQL can’t use it.

You also need to think about operating system or architecture limits, such as
restrictions 32-bit operating systems place on how much memory a given process can
address. Because MySQL runs in a single process with multiple threads, the amount of
memory it can use overall might be severely limited by such restrictions—for example,

Configuring Memory Usage | 347



32-bit Linux kernels limit the amount of memory any one process can address to a value
that is typically between 2.5 and 2.7 GB. Running out of address space is very dangerous
and can cause MySQL to crash. This is pretty rare to see these days, but it used to be
common.

There are many other operating system–specific parameters and oddities that must be
taken into account, including not just the per-process limits, but also stack sizes and
other settings. The system’s glibc libraries can also impose limits per single allocation.
For example, you might not be able to set innodb_buffer_pool larger than 2 GB if that’s
all your glibc libraries support in a single allocation.

Even on 64-bit servers, some limitations still apply. For example, many of the buffers
we discuss, such as the key buffer, are limited to 4 GB on a 64-bit server in 5.0 and
older MySQL versions. Some of these restrictions are lifted in MySQL 5.1, and the
MySQL manual documents each variable’s maximum value.

Per-Connection Memory Needs
MySQL needs a small amount of memory just to hold a connection (thread) open. It
also requires a base amount of memory to execute any given query. You’ll need to set
aside enough memory for MySQL to execute queries during peak load times. Other-
wise, your queries will be starved for memory, and they will run poorly or fail.

It’s useful to know how much memory MySQL will consume during peak usage, but
some usage patterns can unexpectedly consume a lot of memory, which makes this
hard to predict. Prepared statements are one example, because you can have many of
them open at once. Another example is the InnoDB data dictionary (more about this
later).

You don’t need to assume a worst-case scenario when trying to predict peak memory
consumption. For example, if you configure MySQL to allow a maximum of 100 con-
nections, it theoretically might be possible to simultaneously run large queries on all
100 connections, but in reality this probably won’t happen. For example, if you set
myisam_sort_buffer_size to 256M, your worst-case usage is at least 25 GB, but this level
of consumption is highly unlikely to actually occur. Queries that use many large tem-
porary tables, or complex stored procedures, are the most likely causes of high per-
connection memory consumption.

Rather than calculating worst cases, a better approach is to watch your server under a
real workload and see how much memory it uses, which you can see by watching the
process’s virtual memory size. In many Unix-like systems, this is reported in the VIRT
column in top, or VSZ in ps. The next chapter has more information on how to monitor
memory usage.

348 | Chapter 8: Optimizing Server Settings



Reserving Memory for the Operating System
Just as with queries, you need to reserve enough memory for the operating system to
do its work. The best indication that the operating system has enough memory is that
it’s not actively swapping (paging) virtual memory to disk. (See the next chapter for
more on this topic.)

You should reserve at least a gigabyte or two for the operating system—more for ma-
chines with a lot of memory. We suggest starting with 2 GB or 5% of total memory as
the baseline, whichever is greater. Add in some extra for safety, and add in some more
if you’ll be running periodic memory-intensive jobs on the machine (such as backups).
Don’t add any memory for the operating system’s caches, because they can be very
large. The operating system will generally use any leftover memory for these caches,
and we consider them separately from the operating system’s own needs in the follow-
ing sections.

Allocating Memory for Caches
If the server is dedicated to MySQL, any memory you don’t reserve for the operating
system or for query processing is available for caches.

MySQL needs more memory for caches than anything else. It uses caches to avoid disk
access, which is orders of magnitude slower than accessing data in memory. The op-
erating system might cache some data on MySQL’s behalf (especially for MyISAM),
but MySQL needs lots of memory for itself, too.

The following are the most important caches to consider for most installations:

• The InnoDB buffer pool

• The operating system caches for InnoDB log files and MyISAM data

• MyISAM key caches

• The query cache

• Caches you can’t really configure, such as the operating system’s caches of binary
logs and table definition files

There are other caches, but they generally don’t use much memory. We discussed the
query cache in detail in the previous chapter, so the following sections concentrate on
the caches InnoDB and MyISAM need to work well.

It is much easier to configure a server if you’re using only one storage engine. If you’re
using only MyISAM tables, you can disable InnoDB completely, and if you’re using
only InnoDB, you need to allocate only minimal resources for MyISAM (MySQL uses
MyISAM tables internally for some operations). But if you’re using a mixture of storage
engines, it can be very hard to figure out the right balance between them. The best
approach we’ve found is to make an educated guess and then observe the server in
operation.

Configuring Memory Usage | 349



The InnoDB Buffer Pool
If you use mostly InnoDB tables, the InnoDB buffer pool probably needs more memory
than anything else. The InnoDB buffer pool doesn’t just cache indexes: it also holds
row data, the adaptive hash index, the insert buffer, locks, and other internal structures.
InnoDB also uses the buffer pool to help it delay writes, so it can merge many writes
together and perform them sequentially. In short, InnoDB relies heavily on the buffer
pool, and you should be sure to allocate enough memory to it, typically with a process
such as that shown earlier in this chapter. You can use variables from SHOW commands
or tools such as innotop to monitor your InnoDB buffer pool’s memory usage.

If you don’t have much data, and you know that your data won’t grow quickly, you
don’t need to overallocate memory to the buffer pool. It’s not really beneficial to make
it much larger than the size of the tables and indexes that it will hold. There’s nothing
wrong with planning ahead for a rapidly growing database, of course, but sometimes
we see huge buffer pools with a tiny amount of data. This isn’t necessary.

Large buffer pools come with some challenges, such as long shutdown and warmup
times. If there are a lot of dirty (modified) pages in the buffer pool InnoDB can take a
long time to shut down, because it writes the dirty pages to the data files upon shut-
down. You can force it to shut down quickly, but then it just has to do more recovery
when it restarts, so you can’t actually speed up the shutdown and restart cycle time. If
you know in advance when you need to shut down, you can change the innodb_
max_dirty_pages_pct variable at runtime to a lower value, wait for the flush thread to
clean up the buffer pool, and then shut down once the number of dirty pages becomes
small. You can monitor the number of dirty pages by watching the Innodb
_buffer_pool_pages_dirty server status variable or using innotop to monitor SHOW
INNODB STATUS.

Lowering the value of the innodb_max_dirty_pages_pct variable doesn’t actually guar-
antee that InnoDB will keep fewer dirty pages in the buffer pool. Instead, it controls
the threshold at which InnoDB stops being “lazy.” InnoDB’s default behavior is to
flush dirty pages with a background thread, merging writes together and performing
them sequentially for efficiency. This behavior is called “lazy” because it lets InnoDB
delay flushing dirty pages in the buffer pool, unless it needs to use the space for some
other data. When the percentage of dirty pages exceeds the threshold, InnoDB will
flush pages as quickly as it can to try to keep the dirty page count lower. InnoDB will
also go into “furious flushing” mode when there isn’t enough space left in the trans-
action logs, which is one reason that large logs can improve performance.

When you have a large buffer pool, especially in combination with slow disks, the server
might take a long time (many hours or even days) to warm up after a restart. In such
cases, you might benefit from using Percona Server’s feature to reload the pages after
restart. This can reduce warmup times to a few minutes. MySQL 5.6 will introduce a
similar feature. This is especially beneficial on replicas, which pay an extra warmup
penalty due to the single-threaded nature of replication.

350 | Chapter 8: Optimizing Server Settings



If you can’t use Percona Server’s fast warmup feature, some people issue full-table scans
or index scans immediately after a restart to load indexes into the buffer pool. This is
crude, but can sometimes be better than nothing. You can use the init_file setting to
accomplish this. You can place SQL into a file that’s executed when MySQL starts up.
The filename must be specified in the init_file option, and the file can include
multiple SQL commands, each on a single line (no comments are allowed).

The MyISAM Key Caches
The MyISAM key caches are also referred to as key buffers; there is one by default, but
you can create more. Unlike InnoDB and some other storage engines, MyISAM itself
caches only indexes, not data (it lets the operating system cache the data). If you use
mostly MyISAM, you should allocate a lot of memory to the key caches.

The most important option is the key_buffer_size. Any memory not allocated to it will
be available for the operating system caches, which the operating system will usually
fill with data from MyISAM’s .MYD files. MySQL 5.0 has a hard upper limit of 4 GB
for this variable, no matter what architecture you’re running. MySQL 5.1 allows larger
sizes. Check the current documentation for your version of the server.

When you’re deciding how much memory to allocate to the key caches, it might help
to know how much space your MyISAM indexes are actually using on disk. You don’t
need to make the key buffers larger than the data they will cache. You can query the
INFORMATION_SCHEMA tables and sum up the INDEX_LENGTH column to find out the size of
the files storing the indexes:

SELECT SUM(INDEX_LENGTH) FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE='MYISAM';

If you have a Unix-like system, you can also use a command like the following:

$ du -sch `find /path/to/mysql/data/directory/ -name "*.MYI"`

How big should you set the key caches? No bigger than the total index size or 25% to
50% of the amount of memory you reserved for operating system caches, whichever is
smaller.

By default, MyISAM caches all indexes in the default key buffer, but you can create
multiple named key buffers. This lets you keep more than 4 GB of indexes in memory
at once. To create key buffers named key_buffer_1 and key_buffer_2, each sized at
1 GB, place the following in the configuration file:

key_buffer_1.key_buffer_size = 1G
key_buffer_2.key_buffer_size = 1G

Now there are three key buffers: the two explicitly created by those lines and the default
buffer. You can use the CACHE INDEX command to map tables to caches. You can tell
MySQL to use key_buffer_1 for the indexes from tables t1 and t2 with the following
SQL statement:

mysql> CACHE INDEX t1, t2 IN key_buffer_1;

Configuring Memory Usage | 351



Now when MySQL reads blocks from the indexes on these tables, it will cache the
blocks in the specified buffer. You can also preload the tables’ indexes into the cache
with the init_file option and the LOAD INDEX command:

mysql> LOAD INDEX INTO CACHE t1, t2;

Any indexes you don’t explicitly map to a key buffer will be assigned to the default
buffer the first time MySQL needs to access the .MYI file.

You can monitor key buffer usage with information from SHOW STATUS and SHOW VARI
ABLES. You can calculate the percentage of the buffer in use with this equation:

100 - ( (Key_blocks_unused * key_cache_block_size) * 100 / key_buffer_size )

If the server doesn’t use all of its key buffer after it’s been running for a long time, you
can consider making the buffer smaller.

What about the key buffer hit ratio? As we explained previously, this number is useless.
For example, the difference between 99% and 99.9% looks small, but it really repre-
sents a tenfold increase. The cache hit ratio is also application-dependent: some ap-
plications might work fine at 95%, whereas others might be I/O-bound at 99.9%. You
might even be able to get a 99.99% hit ratio with properly sized caches.

The number of cache misses per second is much more empirically useful. Suppose you
have a single hard drive that can do 100 random reads per second. Five misses per
second will not cause your workload to be I/O-bound, but 80 per second will likely
cause problems. You can use the following equation to calculate this value:

Key_reads / Uptime

Calculate the number of misses incrementally over intervals of 10 to 100 seconds, so
you can get an idea of the current performance. The following command will show the
incremental values every 10 seconds:

$ mysqladmin extended-status -r -i 10 | grep Key_reads

Remember that MyISAM uses the operating system cache for the data files, which are
often larger than the indexes. Therefore, it often makes sense to leave more memory
for the operating system cache than for the key caches. Even if you have enough memory
to cache all the indexes, and the key cache miss rate is very low, cache misses when
MyISAM tries to read from the data files (not the index files!) happen at the operating
system level, which is completely invisible to MySQL. Thus, you can have a lot of data
file cache misses independently of your index cache miss rate.

Finally, even if you don’t have any MyISAM tables, bear in mind that you still need to
set key_buffer_size to a small amount of memory, such as 32M. The MySQL server
sometimes uses MyISAM tables for internal purposes, such as temporary tables for
GROUP BY queries.

352 | Chapter 8: Optimizing Server Settings



The MyISAM key block size

The key block size is important (especially for write-intensive workloads) because of
the way it causes MyISAM, the operating system cache, and the filesystem to interact.
If the key block size is too small, you might encounter read-around writes, which are
writes that the operating system cannot perform without first reading some data from
the disk. Here’s how a read-around write happens, assuming the operating system’s
page size is 4 KB (typically true on the x86 architecture) and the key block size is 1 KB:

1. MyISAM requests a 1 KB key block from disk.

2. The operating system reads 4 KB of data from the disk and caches it, then passes
the desired 1 KB of data to MyISAM.

3. The operating system discards the cached data in favor of some other data.

4. MyISAM modifies the 1 KB key block and asks the operating system to write it
back to disk.

5. The operating system reads the same 4 KB of data from the disk into the operating
system cache, modifies the 1 KB that MyISAM changed, and writes the entire 4 KB
back to disk.

The read-around write happened in step 5, when MyISAM asked the operating system
to write only part of a 4 KB page. If MyISAM’s block size had matched the operating
system’s, the disk read in step 5 could have been avoided.6

Unfortunately, in MySQL 5.0 and earlier there’s no way to configure the key block
size. However, in MySQL 5.1 and later you can avoid read-around writes by making
MyISAM’s key block size the same as the operating system’s. The myisam_block_size
variable controls the key block size. You can also specify the size for each key with the
KEY_BLOCK_SIZE option in a CREATE TABLE or CREATE INDEX statement, but because all
keys are stored in the same file, you really need all of them to have blocks as large as
or larger than the operating system’s to avoid alignment issues that could still cause
read-around writes. (For example, if one key has 1 KB blocks and another has 4 KB
blocks, the 4 KB block boundaries might not match the operating system’s page
boundaries.)

The Thread Cache
The thread cache holds threads that aren’t currently associated with a connection but
are ready to serve new connections. When there’s a thread in the cache and a new
connection is created, MySQL removes the thread from the cache and gives it to the
new connection. When the connection is closed, MySQL places the thread back into

6. Theoretically, if you could ensure that the original 4 KB of data was still in the operating system’s cache,
the read wouldn’t be needed. However, you have no control over which blocks the operating system
decides to keep in its cache. You can find out which blocks are in the cache with the fincore tool, available
at http://net.doit.wisc.edu/~plonka/fincore/.

Configuring Memory Usage | 353

http://net.doit.wisc.edu/~plonka/fincore/


the cache, if there’s room. If there isn’t room, MySQL destroys the thread. As long as
MySQL has a free thread in the cache it can respond rapidly to connection requests,
because it doesn’t have to create a new thread for each connection.

The thread_cache_size variable specifies the number of threads MySQL can keep in
the cache. You probably won’t need to configure this value unless your server gets many
connection requests. To check whether the thread cache is large enough, watch the 
Threads_created status variable. We generally try to keep the thread cache large enough
that we see fewer than 10 new threads created each second, but it’s often pretty easy
to get this number lower than 1 per second.

A good approach is to watch the Threads_connected variable and try to set thread
_cache_size large enough to handle the typical fluctuation in your workload. For ex-
ample, if Threads_connected usually stays between 100 and 120, you can set the cache
size to 20. If it stays between 500 and 700, a thread cache of 200 should be large enough.
Think of it this way: at 700 connections, there are probably no threads in the cache; at
500 connections, there are 200 cached threads ready to be used if the load increases to
700 again.

Making the thread cache very large is probably not necessary for most uses, but keeping
it small doesn’t save much memory, so there’s little benefit in doing so. Each thread
that’s in the thread cache or sleeping typically uses around 256 KB of memory. This is
not very much compared to the amount of memory a thread can use when a connection
is actively processing a query. In general, you should keep your thread cache large
enough that Threads_created doesn’t increase very often. If this is a very large number,
however (e.g., many thousand threads), you might want to set it lower because some
operating systems don’t handle very large numbers of threads well, even when most of
them are sleeping.

The Table Cache
The table cache is similar in concept to the thread cache, but it stores objects that
represent tables. Each object in the cache contains the associated table’s parsed .frm
file, plus other data. Exactly what else is in the object depends on the table’s storage
engine. For example, for MyISAM, it holds the table data and/or index file descriptors.
For merge tables it might hold many file descriptors, because merge tables can have
many underlying tables.

The table cache can help you reuse resources. For instance, when a query requests
access to a MyISAM table, MySQL might be able to give it a file descriptor from the
cached object. Although this does avoid the cost of opening a file descriptor, that’s not
as expensive as you might think. Opening and closing file descriptors is very fast on
local storage; the server should be able to do it a million times a second easily (it’s
different on network-attached storage, though). The real benefit of the table cache is
for MyISAM tables, where it lets the server avoid modifying the MyISAM file headers
to mark a table as “in use.”7

354 | Chapter 8: Optimizing Server Settings



The table cache’s design is one of the areas where the separation between the server
and the storage engines is not completely clean, for historical reasons. The table cache
is a little less important for InnoDB, because InnoDB doesn’t rely on it for as many
purposes (such as holding file descriptors; it has its own version of a table cache for
this purpose). However, even InnoDB benefits from caching the parsed .frm files.

In MySQL 5.1, the table cache is separated into two parts: a cache of open tables and
a table definition cache (configured via the table_open_cache and table_definition
_cache variables). Thus, the table definitions (the parsed .frm files) are separated from
the other resources, such as file descriptors. Opened tables are still per-thread, per-
table-used, but the table definitions are global and can be shared among all connections
efficiently. You can generally set table_definition_cache high enough to cache all your
table definitions. Unless you have tens of thousands of tables, this is likely to be the
easiest approach.

If the Opened_tables status variable is large or increasing, the table cache might not be
large enough, and you can consider increasing the table_cache system variable (or
table_open_cache, in MySQL 5.1). However, note that this counter increases when you
create and drop temporary tables, so if you do that a lot, you’ll never get the counter
to stop increasing.

One downside to making the table cache very large is that it might cause longer shut-
down times when your server has a lot of MyISAM tables, because the key blocks have
to be flushed and the tables have to be marked as no longer open. It can also make 
FLUSH TABLES WITH READ LOCK take a long time to complete, for the same reason.

More seriously, the algorithms that check the table cache aren’t very efficient; more on
this later.

If you get errors indicating that MySQL can’t open any more files (use the perror utility
to check what the error number means), you might need to increase the number of files
MySQL is allowed to keep open. You can do this with the open_files_limit server
variable in your my.cnf file.

The thread and table caches don’t really use much memory, and they can be beneficial
when they conserve resources. Although creating a new thread and opening a new table
aren’t really expensive compared to other things MySQL might do, the overhead can
add up. Caching threads and tables can sometimes improve efficiency.

7. The concept of an “opened table” can be a little confusing. MySQL counts a table as opened many times
when different queries are accessing it simultaneously, or even when a single query refers to the same
table more than once, as in a subquery or a self-join. MyISAM’s index files contain a counter that MyISAM
increments when the table is opened and decrements when it is closed. This lets MyISAM see when the
table wasn’t closed cleanly: if it opens a table for the first time and the counter is not zero, the table wasn’t
closed cleanly.

Configuring Memory Usage | 355



The InnoDB Data Dictionary
InnoDB has its own per-table cache, variously called a table definition cache or data
dictionary, which you cannot configure in current versions of MySQL. When InnoDB
opens a table, it adds a corresponding object to the data dictionary. Each table can take
up 4 KB or more of memory (although much less space is required in MySQL 5.1).
Tables are not removed from the data dictionary when they are closed.

As a result, the server can appear to leak memory over time, due to an ever-increasing
number of entries in the dictionary cache. It isn’t truly leaking memory; it just isn’t
implementing any kind of cache expiration. This is normally a problem only when you
have many (thousands or tens of thousands) large tables. If this is a problem for you,
you can use Percona Server, which has an option to limit the data dictionary’s size by
removing tables that are unused. There is a similar feature in the yet-to-be-released
MySQL 5.6.

The other performance issue is computing statistics for the tables when opening them
for the first time, which is expensive because it requires a lot of I/O. In contrast to
MyISAM, InnoDB doesn’t store statistics in the tables permanently; it recomputes them
each time it starts, and thereafter when various intervals expire or events occur (changes
to the table’s contents, queries against the INFORMATION_SCHEMA, and so on). If you have
a lot of tables, your server can take hours to start and fully warm up, during which time
it might not be doing much other than waiting for one I/O operation after another. You
can enable the innodb_use_sys_stats_table option in Percona Server (also in MySQL
5.6, but called innodb_analyze_is_persistent) to store the statistics persistently on disk
and solve this problem.

Even after startup, InnoDB statistics operations can have an impact on the server and
on individual queries. You can turn off the innodb_stats_on_metadata option to avoid
time-consuming refreshes of table statistics. This can make a big difference when tools
such as IDEs are querying the INFORMATION_SCHEMA tables.

If you use InnoDB’s innodb_file_per_table option (described later), there’s a separate
limit on the number of .ibd files InnoDB can keep open at any time. This is handled by
the InnoDB storage engine, not the MySQL server, and is controlled by innodb
_open_files. InnoDB doesn’t open files the same way MyISAM does: whereas MyISAM
uses the table cache to hold file descriptors for open tables, in InnoDB there is no direct
relationship between open tables and open files. InnoDB uses a single, global file de-
scriptor for each .ibd file. If you can afford it, it’s best to set innodb_open_files large
enough that the server can keep all .ibd files open simultaneously.

Configuring MySQL’s I/O Behavior
A few configuration options affect how MySQL synchronizes data to disk and performs
recovery. These can affect performance dramatically, because they involve expensive
I/O operations. They also represent a trade-off between performance and data safety.

356 | Chapter 8: Optimizing Server Settings



In general, it’s expensive to ensure that your data is written to disk immediately and
consistently. If you’re willing to risk the danger that a disk write won’t really make it
to permanent storage, you can increase concurrency and/or reduce I/O waits, but you’ll
have to decide for yourself how much risk you can tolerate.

InnoDB I/O Configuration
InnoDB permits you to control not only how it recovers, but also how it opens and
flushes its data, which greatly affects recovery and overall performance. InnoDB’s re-
covery process is automatic and always runs when InnoDB starts, though you can in-
fluence what actions it takes. Leaving aside recovery and assuming nothing ever crashes
or goes wrong, there’s still a lot to configure for InnoDB. It has a complex chain of
buffers and files designed to increase performance and guarantee ACID properties, and
each piece of the chain is configurable. Figure 8-1 illustrates these files and buffers.

A few of the most important things to change for normal usage are the InnoDB log file
size, how InnoDB flushes its log buffer, and how InnoDB performs I/O.

The InnoDB transaction log

InnoDB uses its log to reduce the cost of committing transactions. Instead of flushing
the buffer pool to disk when each transaction commits, it logs the transactions. The
changes transactions make to data and indexes often map to random locations in the
tablespace, so flushing these changes to disk would require random I/O. InnoDB as-
sumes it’s using conventional disks, where random I/O is much more expensive than
sequential I/O because of the time it takes to seek to the correct location on disk and
wait for the desired part of the disk to rotate under the head.

InnoDB uses its log to convert this random disk I/O into sequential I/O. Once the log
is safely on disk, the transactions are permanent, even though the changes haven’t been
written to the data files yet. If something bad happens (such as a power failure), InnoDB
can replay the log and recover the committed transactions.

Of course, InnoDB does ultimately have to write the changes to the data files, because
the log has a fixed size. It writes to the log in a circular fashion: when it reaches the end
of the log, it wraps around to the beginning. It can’t overwrite a log record if the changes
contained there haven’t been applied to the data files, because this would erase the only
permanent record of the committed transaction.

InnoDB uses a background thread to flush the changes to the data files intelligently.
This thread can group writes together and make the data writes sequential, for im-
proved efficiency. In effect, the transaction log converts random data file I/O into
mostly sequential log file and data file I/O. Moving flushes into the background makes
queries complete more quickly and helps cushion the I/O system from spikes in the
query load.

Configuring MySQL’s I/O Behavior | 357



The overall log file size is controlled by innodb_log_file_size and innodb_log
_files_in_group, and it’s very important for write performance. The total size is the
sum of each file’s size. By default there are two 5 MB files, for a total of 10 MB. This is
much too small for a high-performance workload. You need hundreds of megabytes,
or even gigabytes, of log files.

InnoDB uses multiple files as a single circular log. You usually don’t need to change
the default number of logs, just the size of each log file. To change the log file size, shut
down MySQL cleanly, move the old logs away, reconfigure, and restart. Be sure MySQL
shuts down cleanly, or the log files will actually have entries that need to be applied to
the data files! Watch the MySQL error log when you restart the server. After you’ve
restarted successfully, you can delete the old log files.

To determine the ideal size for your log files, you’ll have to
weigh the overhead of routine data changes against the recovery time required in the
event of a crash. If the log is too small, InnoDB will have to do more checkpoints,
causing more log writes. In extreme cases, write queries might stall and have to wait
for changes to be applied to the data files before there is room to write into the log. On
the other hand, if the log is too large, InnoDB might have to do a lot of work when it
recovers. This can greatly increase recovery time, although this process is much more
efficient in newer MySQL versions.

Log file size and the log buffer.

Figure 8-1. InnoDB’s buffers and files

358 | Chapter 8: Optimizing Server Settings



Your data size and access patterns will influence the recovery time, too. Suppose you
have a terabyte of data and 16 GB of buffer pool, and your total log size is 128 MB. If
you have a lot of dirty pages (i.e., pages whose changes have not yet been flushed to
the data files) in the buffer pool and they are uniformly spread across your terabyte of
data, recovery after a crash might take a long time. InnoDB will have to scan through
the log, examine the data files, and apply changes to the data files as needed. That’s a
lot of reading and writing! On the other hand, if the changes are localized—say, if only
a few hundred megabytes of data are updated frequently—recovery might be fast, even
when your data and log files are huge. Recovery time also depends on the size of a
typical modification, which is related to your average row length. Short rows let more
modifications fit in the log, so InnoDB might need to replay more modifications on
recovery.8

When InnoDB changes any data, it writes a record of the change into its log buffer,
which it keeps in memory. InnoDB flushes the buffer to the log files on disk when the
buffer gets full, when a transaction commits, or once per second—whichever comes
first. Increasing the buffer size, which is 1 MB by default, can help reduce I/O if you
have large transactions. The variable that controls the buffer size is called innodb_
log_buffer_size.

You usually don’t need to make the buffer very large. The recommended range is 1 to
8 MB, and this usually will be enough unless you write a lot of huge BLOB records. The
log entries are very compact compared to InnoDB’s normal data. They are not page-
based, so they don’t waste space storing whole pages at a time. InnoDB also makes log
entries as short as possible. They are sometimes even stored as the function number
and parameters of a C function!

There’s an additional circumstance where a larger value might be beneficial: when it
can reduce contention during allocation of space in the buffer. When we’re configuring
servers with a large amount of memory, we’ll sometimes allocate 32 to 128 MB of log
buffer simply because spending such a relatively small amount of extra memory is not
detrimental and it can help avoid pressure on a bottleneck. The bottleneck shows up
as contention on the log buffer mutex when it’s a problem.

You can monitor InnoDB’s log and log buffer I/O performance by inspecting the LOG
section of the output of SHOW INNODB STATUS, and by watching the Innodb_os_log_
written status variable to see how much data InnoDB writes to the log files. A good
rule of thumb is to watch it over intervals of 10 to 100 seconds and note the peak value.
You can use this to judge whether your log buffer is sized right. For example, if you see
a peak of 100 KB written to the log per second, a 1 MB log buffer is probably plenty.

You can also use this metric to decide on a good size for your log files. If the peak is
100 KB per second, a 256 MB log file is enough to store at least 2,560 seconds of log

8. For the curious, Percona Server’s innodb_recovery_stats option can help you understand your server’s
workload from the standpoint of performing crash recovery.

Configuring MySQL’s I/O Behavior | 359



entries, which is likely to be enough. As a rule of thumb, you can make your total log
file size large enough to hold an hour’s worth of server activity.

When InnoDB flushes the log buffer to the log files on
disk, it locks the buffer with a mutex, flushes it up to the desired point, and then moves
any remaining entries to the front of the buffer. It is possible that more than one trans-
action will be ready to flush its log entries when the mutex is released. InnoDB has a
group commit feature that can commit all of them to the log in a single I/O operation,
but this is broken in MySQL 5.0 when the binary log is enabled. We wrote about group
commit in the previous chapter.

The log buffer must be flushed to durable storage to ensure that committed transactions
are fully durable. If you care more about performance than durability, you can change 
innodb_flush_log_at_trx_commit to control where and how often the log buffer is
flushed. Possible settings are as follows:

0
Write the log buffer to the log file and flush the log file every second, but do nothing
at transaction commit.

1
Write the log buffer to the log file and flush it to durable storage every time a
transaction commits. This is the default (and safest) setting; it guarantees that you
won’t lose any committed transactions, unless the disk or operating system “fakes”
the flush operation.

2
Write the log buffer to the log file at every commit, but don’t flush it. InnoDB
schedules a flush once every second. The most important difference from the 0
setting (and what makes 2 the preferable setting) is that 2 won’t lose any transac-
tions if the MySQL process crashes. If the entire server crashes or loses power,
however, you can still lose transactions.

It’s important to know the difference between writing the log buffer to the log file and
flushing the log to durable storage. In most operating systems, writing the buffer to the
log simply moves the data from InnoDB’s memory buffer to the operating system’s
cache, which is also in memory. It doesn’t actually write the data to durable storage.
Thus, settings 0 and 2 usually result in at most one second of lost data if there’s a crash
or a power outage, because the data might exist only in the operating system’s cache.
We say “usually” because InnoDB tries to flush the log file to disk about once per second
no matter what, but it is possible to lose more than a second of transactions in some
cases, such as when a flush gets stalled.

In contrast, flushing the log to durable storage means InnoDB asks the operating
system to actually flush the data out of the cache and ensure it is written to the disk.
This is a blocking I/O call that doesn’t complete until the data is completely written.
Because writing data to a disk is slow, this can dramatically reduce the number of
transactions InnoDB can commit per second when innodb_flush_log_at_trx_commit is

How InnoDB flushes the log buffer.

360 | Chapter 8: Optimizing Server Settings



set to 1. Today’s high-speed drives9 can perform only a couple of hundred real disk
transactions per second, simply because of the limitations of drive rotation speed and
seek time.

Sometimes the hard disk controller or operating system fakes a flush by putting the
data into yet another cache, such as the hard disk’s own cache. This is faster but very
dangerous, because the data might still be lost if the drive loses power. This is even
worse than setting innodb_flush_log_at_trx_commit to something other than 1, because
it can cause data corruption, not just lost transactions.

Setting innodb_flush_log_at_trx_commit to anything other than 1 can cause you to lose
transactions. However, you might find the other settings useful if you don’t care about
durability (the D in ACID). Maybe you just want some of InnoDB’s other features, such
as clustered indexes, resistance to data corruption, and row-level locking. This is not
uncommon when using InnoDB to replace MyISAM solely for performance reasons.

The best configuration for high-performance transactional needs is to leave innodb_
flush_log_at_trx_commit set to 1 and place the log files on a RAID volume with a
battery-backed write cache. This is both safe and very fast. In fact, we dare say that any
production database server that’s expected to handle a serious workload needs to have
this kind of hardware.

Percona Server extends innodb_flush_log_at_trx_commit to make it a per-session
variable, instead of global for the whole server. This allows applications with varying
performance and durability needs to use the same database, and avoids the one-size-
fits-all solution offered by standard MySQL.

How InnoDB opens and flushes log and data files

The innodb_flush_method option lets you configure how InnoDB actually interacts with
the filesystem. Despite its name, it can affect how InnoDB reads data, not just how it
writes it. The Windows and non-Windows values for this option are mutually exclu-
sive: you can use async_unbuffered, unbuffered, and normal only on Windows, and you
cannot use any other values on Windows. The default value is unbuffered on Windows
and fdatasync on all other systems. (If SHOW GLOBAL VARIABLES shows the variable with
an empty value, that means it’s set to the default.)

Changing how InnoDB performs I/O operations can impact perfor-
mance greatly, so be sure you understand what you’re doing before you
change anything!

This is a slightly confusing option, because it affects both the log files and the data files,
and it sometimes does different things to each kind of file. It would be nice to have one

9. We’re talking about spindle-based disk drives with rotating platters, not solid-state hard drives, which
have completely different performance characteristics.

Configuring MySQL’s I/O Behavior | 361



configuration option for the logs and another for the data files, but they’re combined.
Here are the possible values:

fdatasync
The default value on non-Windows systems: InnoDB uses fsync() to flush both
data and log files.

InnoDB generally uses fsync() instead of fdatasync(), even though this value
seems to indicate the contrary. fdatasync() is like fsync(), except it flushes only
the file’s data, not its metadata (last modified time, etc.). Therefore, fsync() can
cause more I/O. However, the InnoDB developers are very conservative, and they
found that fdatasync() caused corruption in some cases. InnoDB determines
which methods can be used safely; some options are set at compile time and some
are discovered at runtime. It uses the fastest safe method it can.

The disadvantage of using fsync() is that the operating system buffers at least some
of the data in its own cache. In theory, this is wasteful double buffering, because
InnoDB manages its own buffers more intelligently than the operating system can.
However, the ultimate effect is very system- and filesystem-dependent. The double
buffering might not be a bad thing if it lets the filesystem do smarter I/O scheduling
and batching. Some filesystems and operating systems can accumulate writes and
execute them together, reorder them for efficiency, or write to multiple devices in
parallel. They might also do read-ahead optimizations, such as instructing the disk
to preread the next sequential block if several have been requested in sequence.

Sometimes these optimizations help, and sometimes they don’t. You can read your
system’s manpage for fsync(2) if you’re curious about exactly what your version
of fsync() does.

innodb_file_per_table causes each file to be fsync()ed separately, which means
writes to multiple tables can’t be combined into a single I/O operation. This might
require InnoDB to perform a higher total number of fsync() operations.

O_DIRECT
InnoDB uses the O_DIRECT flag, or directio(), depending on the system, on the
data files. This option does not affect the log files and is not necessarily available
on all Unix-like operating systems. At least GNU/Linux, FreeBSD, and Solaris (late
5.0 and newer) support it. Unlike the O_DSYNC flag, it affects both reads and writes.

This setting still uses fsync() to flush the files to disk, but it instructs the operating
system not to cache the data and not to use read-ahead. This disables the operating
system’s caches completely and makes all reads and writes go directly to the storage
device, avoiding double buffering.

On most systems, this is implemented with a call to fcntl() to set the O_DIRECT flag
on the file descriptor, so you can read the fcntl(2) manpage for your system’s
details. On Solaris, this option uses directio().

If your RAID card does read-ahead, this setting will not disable that. It disables
only the operating system’s and/or filesystem’s read-ahead capabilities.

362 | Chapter 8: Optimizing Server Settings



You generally need a RAID card with a write cache set to a write-back policy if you
use O_DIRECT, because that’s typically the only thing that keeps performance good.
Using O_DIRECT when there is no buffer between InnoDB and the actual storage
device, such as when you have no write cache on your RAID card, can cause per-
formance to degrade greatly. This is a bit less of a problem nowadays with multiple
write threads (and native asynchronous I/O introduced in MySQL 5.5), but it’s
still the case in general.

This setting can cause the server’s warmup time to increase significantly, especially
if the operating system’s cache is very large. It can also make a small buffer pool
(e.g., a buffer pool of the default size) much slower than buffered I/O would. This
is because the operating system won’t “help out” by keeping more of the data in
its own cache. If the desired data isn’t in the buffer pool, InnoDB will have to read
it directly from disk.

This setting does not impose any extra penalty on the use of innodb_
file_per_table. However, the reverse can be true: if you do not use innodb_file_
per_table, you can suffer from some serialization of I/O when you use O_DIRECT.
This happens because some filesystems (including all of Linux’s ext filesystems)
have a per-inode mutex. When you use O_DIRECT with such filesystems, you really
need innodb_file_per_table to be enabled. We delve more into filesystems in the
next chapter.

ALL_O_DIRECT
This option is available in Percona Server and MariaDB. It lets the server open the
log files, not just the data files, in the same way that standard MySQL opens the
data files.

O_DSYNC
This option sets the O_SYNC flag on the open() call for the log files. It makes all writes
synchronous—in other words, writes do not return until the data is written to
disk. This option does not affect the data files.

The difference between the O_SYNC flag and the O_DIRECT flag is that O_SYNC doesn’t
disable caching at the operating system level. Therefore, it doesn’t avoid double
buffering, and it doesn’t make writes go directly to disk. With O_SYNC, writes modify
the data in the cache, and then it is sent to the disk.

While synchronous writes with O_SYNC might sound very similar to what fsync()
does, the two can be implemented very differently on both the operating system
and the hardware level. When the O_SYNC flag is used, the operating system might
pass a “use synchronous I/O” flag down to the hardware level, telling the device
not to use caches. On the other hand, fsync() tells the operating system to flush
modified buffers to the device, followed by an instruction for the device to flush
its own caches, if applicable, so it is certain that the data has been recorded on the
physical media. Another difference is that with O_SYNC, every write() or pwrite()
operation syncs data to disk before it finishes, blocking the calling process. In con-
trast, writing without the O_SYNC flag and then calling fsync() allows writes to

Configuring MySQL’s I/O Behavior | 363



accumulate in the cache (which makes each write fast), and then flushes them all
at once.

Again, despite its name, this option sets the O_SYNC flag, not the O_DSYNC flag, be-
cause the InnoDB developers found bugs with O_DSYNC. O_SYNC and O_DSYNC are
similar to fysnc() and fdatasync(): O_SYNC syncs both data and metadata, whereas
O_DSYNC syncs data only.

async_unbuffered
This is the default value on Windows. This option causes InnoDB to use unbuffered
I/O for most writes; the exception is that it uses buffered I/O to the log files when 
innodb_flush_log_at_trx_commit is set to 2.

This setting causes InnoDB to use the operating system’s native asynchronous
(overlapped) I/O for both reads and writes on Windows 2000, XP, and newer. On
older Windows versions, InnoDB uses its own asynchronous I/O, which is imple-
mented with threads.

unbuffered
Windows-only. This option is similar to async_unbuffered but does not use native
asynchronous I/O.

normal
Windows-only. This option causes InnoDB not to use native asynchronous I/O or
unbuffered I/O.

nosync and littlesync
For development use only. These options are undocumented and unsafe for pro-
duction; they should not be used.

If that all seemed like a lot of explanation with no advice, here’s the advice: if you use
a Unix-like operating system and your RAID controller has a battery-backed write
cache, we recommend that you use O_DIRECT. If not, either the default or O_DIRECT will
probably be the best choice, depending on your application.

The InnoDB tablespace

InnoDB keeps its data in a tablespace, which is essentially a virtual filesystem spanning
one or many files on disk. InnoDB uses the tablespace for many purposes, not just
for storing tables and indexes. It keeps its undo log (old row versions), insert buffer,
doublewrite buffer (described in an upcoming section), and other internal structures
in the tablespace.

You specify the tablespace files with the innodb_data_file
_path configuration option. The files are all contained in the directory given by
innodb_data_home_dir. Here’s an example:

innodb_data_home_dir  = /var/lib/mysql/
innodb_data_file_path = ibdata1:1G;ibdata2:1G;ibdata3:1G

Configuring the tablespace.

364 | Chapter 8: Optimizing Server Settings



That creates a 3 GB tablespace in three files. Sometimes people wonder whether they
can use multiple files to spread load across drives, like this:

innodb_data_file_path = /disk1/ibdata1:1G;/disk2/ibdata2:1G;...

While that does indeed place the files in different directories, which represent different
drives in this example, InnoDB concatenates the files end-to-end. Thus, you usually
don’t gain much this way. InnoDB will fill the first file, then the second when the first
is full, and so on; the load isn’t really spread in the fashion you need for higher perfor-
mance. A RAID controller is a smarter way to spread load.

To allow the tablespace to grow if it runs out of space, you can make the last file
autoextend as follows:

...ibdata3:1G:autoextend

The default behavior is to create a single 10 MB autoextending file. If you make the file
autoextend, it’s a good idea to place an upper limit on the tablespace’s size to keep it
from growing very large, because once it grows, it doesn’t shrink. For example, the
following example limits the autoextending file to 2 GB:

...ibdata3:1G:autoextend:max:2G

Managing a single tablespace can be a hassle, especially if it autoextends and you want
to reclaim the space (for this reason, we recommend disabling the autoextend feature,
or at least setting a reasonable cap on the space). The only way to reclaim space is to
dump your data, shut down MySQL, delete all the files, change the configuration,
restart, let InnoDB create new empty files, and restore your data. InnoDB is completely
unforgiving about its tablespace—you cannot simply remove files or change their sizes.
It will refuse to start if you corrupt its tablespace. It is likewise very strict about its log
files. If you’re used to casually moving files around with MyISAM, take heed!

The innodb_file_per_table option lets you configure InnoDB to use one file per table
in MySQL 4.1 and later. It stores the data in the database directory as tablename.ibd
files. This makes it easier to reclaim space when you drop a table, and it can be useful
for spreading tables across multiple disks. However, placing the data in multiple files
can actually result in more wasted space overall, because it trades internal fragmenta-
tion in the single InnoDB tablespace for wasted space in the .ibd files. This is more of
an issue for very small tables, because InnoDB’s page size is 16 KB. Even if your table
has only 1 KB of data, it will still require at least 16 KB on disk.

Even if you enable the innodb_file_per_table option, you’ll still need the main table-
space for the undo logs and other system data. It will be smaller if you’re not storing
all the data in it, but it’s still a good idea to disable autoextend, because you can’t shrink
the file without reloading all your data.

Some people like to use innodb_file_per_table just because of the extra manageability
and visibility it gives you. For example, it’s much faster to find a table’s size by exam-
ining a single file than it is to use SHOW TABLE STATUS, which has to perform more com-
plex work to determine how many pages are allocated to a table.

Configuring MySQL’s I/O Behavior | 365



There is a dark side to innodb_file_per_table: slow DROP TABLE performance. This can
be severe enough to cause a noticeable server-wide stall, for two reasons:

• Dropping the table unlinks (deletes) the file at the filesystem level, which can be
very slow on some filesystems (ext3, we’re looking at you). You can shorten the
duration of this with tricks on the filesystem: link the .ibd file to a zero-sized file,
then delete the file manually, instead of waiting for MySQL to do it.

• When you enable this option, each table gets its own tablespace inside InnoDB. It
turns out that removing the tablespace actually requires InnoDB to lock and scan
the buffer pool while it looks for pages belonging to this tablespace, which is very
slow on a server with a large buffer pool. If you’re going to be dropping a lot of
InnoDB tables (including temporary tables) and you use innodb_file_per_table,
you might benefit from the fix included with Percona Server, which lets the server 
lazily invalidate the pages belonging to the dropped tables. You just need to set the 
innodb_lazy_drop_table option.

What’s the final recommendation? We suggest that you use innodb_file_per_table
and cap the size of your shared tablespace to make your life easier. If you run into any
circumstances that make this painful, as noted above, consider one of the fixes we
suggested.

We should also note that you don’t actually have to store your InnoDB files in a tra-
ditional filesystem. Like many traditional database servers, InnoDB offers the option
of using a raw device—i.e., an unformatted partition—for its storage. However, today’s
filesystems can handle sufficiently large files that you shouldn’t need to use this option.
Using raw devices might improve performance by a few percentage points, but we don’t
think this small increase justifies the disadvantages of not being able to manipulate the
data as files. When you store your data on a raw partition, you can’t use mv, cp, or any
other tools on it. Ultimately, the tiny performance gains you get from using raw devices
aren’t worth the extra hassle.

InnoDB’s tablespace can grow very large in a write-
heavy environment. If transactions stay open for a long time (even if they’re not
doing any work) and they’re using the default REPEATABLE READ transaction isolation
level, InnoDB won’t be able to remove old row versions, because the uncommitted
transactions will still need to be able to see them. InnoDB stores the old versions in the
tablespace, so it continues to grow as more data is updated. Sometimes the problem
isn’t uncommitted transactions, but just the workload: the purge process is only a single
thread until recent versions of MySQL, and it might not be able to keep up with the
number of old row versions that need to be purged.

In either case, the output of SHOW INNODB STATUS can help you pinpoint the problem.
Look at the history list length; it shows the size of the undo log, in units of pages.

You can corroborate this by examining the first and second lines of the TRANSACTIONS
section, which show the current transaction number and the point to which the purge

Old row versions and the tablespace.

366 | Chapter 8: Optimizing Server Settings



has completed. If the difference is large, you might have a lot of unpurged transactions.
Here’s an example:

------------
TRANSACTIONS
------------
Trx id counter 0 80157601
Purge done for trx’s n:o <0 80154573 undo n:o <0 0

The transaction identifier is a 64-bit number composed of two 32-bit numbers (it’s a
hexadecimal number in newer versions of InnoDB), so you might have to do a little
math to compute the difference. In this case it’s easy, because the high bits are just
zeros: there are 80,157,601 – 80,154,573 = 3,028 potentially unpurged transactions
(innotop can do this math for you). We said “potentially” because a large difference
doesn’t necessarily mean there are a lot of unpurged rows. Only transactions that
change data will create old row versions, and there might be many transactions that
haven’t changed any data (conversely, a single transaction could have changed many
rows).

If you have a large undo log and your tablespace is growing because of it, you can force
MySQL to slow down enough for InnoDB’s purge thread to keep up. This might not
sound attractive, but there’s no alternative. Otherwise, InnoDB will keep writing data
and filling up your disk until the disk runs out of space or the tablespace reaches the
limits you’ve defined.

To throttle the writes, set the innodb_max_purge_lag variable to a value other than 0.
This value indicates the maximum number of transactions that can be waiting to be
purged before InnoDB starts to delay further queries that update data. You’ll have to
know your workload to decide on a good value. As an example, if your average trans-
action affects 1 KB of rows and you can tolerate 100 MB of unpurged rows in your
tablespace, you could set the value to 100000.

Bear in mind that unpurged row versions impact all queries, because they effectively
make your tables and indexes larger. If the purge thread simply can’t keep up, perfor-
mance can decrease dramatically. Setting the innodb_max_purge_lag variable will slow
down performance too, but it’s the lesser of the two evils.10

In newer versions of MySQL, and even in older versions of Percona Server and MariaDB,
the purging process is significantly improved and separated from other internal house-
keeping tasks. You can even create multiple dedicated purge threads to do this back-
ground work more quickly. This is a better option than throttling the server, if you can
take advantage of it.

10. Note that the way this ought to be implemented is a topic of some debate; see MySQL bug 60776 for the
details.

Configuring MySQL’s I/O Behavior | 367



The doublewrite buffer

InnoDB uses a doublewrite buffer to avoid data corruption in case of partial page writes.
A partial page write occurs when a disk write doesn’t complete fully, and only a portion
of a 16 KB page is written to disk. There are a variety of reasons (crashes, bugs, and so
on) that a page might be partially written to disk. The doublewrite buffer guards against
data corruption if this happens.

The doublewrite buffer is a special reserved area of the tablespace, large enough to hold
100 pages in a contiguous block. It is essentially a backup copy of recently written
pages. When InnoDB flushes pages from the buffer pool to the disk, it writes (and
flushes) them first to the doublewrite buffer, then to the main data area where they
really belong. This ensures that every page write is atomic and durable.

Doesn’t this mean that every page is written twice? Yes, it does, but because InnoDB
writes several pages to the doublewrite buffer sequentially and only then calls
fsync() to sync them to disk, the performance impact is relatively small—generally a
few percentage points, not double, although the overhead is more noticeable on solid-
state drives, as we’ll discuss in the next chapter. More importantly, this strategy allows
the log files to be much more efficient. Because the doublewrite buffer gives InnoDB a
very strong guarantee that the data pages are not corrupt, InnoDB’s log records don’t
have to contain full pages; they are more like binary deltas to pages.

If there’s a partial page write to the doublewrite buffer itself, the original page will still
be on disk in its real location. When InnoDB recovers, it will use the original page
instead of the corrupted copy in the doublewrite buffer. However, if the doublewrite
buffer succeeds and the write to the page’s real location fails, InnoDB will use the copy
in the doublewrite buffer during recovery. InnoDB knows when a page is corrupt be-
cause each page has a checksum at the end; the checksum is the last thing to be written,
so if the page’s contents don’t match the checksum, the page is corrupt. Upon recovery,
therefore, InnoDB just reads each page in the doublewrite buffer and verifies the check-
sums. If a page’s checksum is incorrect, it reads the page from its original location.

In some cases, the doublewrite buffer really isn’t necessary—for example, you might
want to disable it on replicas. Also, some filesystems (such as ZFS) do the same thing
themselves, so it is redundant for InnoDB to do it. You can disable the doublewrite
buffer by setting innodb_doublewrite to 0. In Percona Server, you can configure the
doublewrite buffer to be stored in its own file, so you can separate this workload from
the rest of the server’s work by placing it on separate disk drives.

Other I/O configuration options

The sync_binlog option controls how MySQL flushes the binary log to disk. Its default
value is 0, which means MySQL does no flushing and it’s up to the operating system
to decide when to flush its cache to durable storage. If the value is greater than 0, it
specifies how many binary log writes happen between flushes to disk (each write is a

368 | Chapter 8: Optimizing Server Settings



single statement if autocommit is set, and otherwise a transaction). It’s rare to set this
option to anything other than 0 or 1.

If you don’t set sync_binlog to 1, it’s likely that a crash will cause your binary log to be
out of sync with your transactional data. This can easily break replication and make
point-in-time recovery impossible. However, the safety provided by setting this option
to 1 comes at high price. Synchronizing the binary log and the transaction log requires
MySQL to flush two files in two distinct locations. This might require a disk seek, which
is relatively slow.

As with the InnoDB log file, placing the binary log on a RAID volume with a battery-
backed write cache can give a huge performance boost. In fact, writing and flushing
the binary logs is actually more expensive than writing and flushing the InnoDB trans-
action logs, because unlike the InnoDB transaction logs, every write to the binary logs
increases their size. That requires a metadata update at the filesystem level for every
write. Thus, setting sync_binlog=1 can be much more detrimental to performance
than setting innodb_flush_log_at_trx_commit=1, especially on network filesystems such
as NFS.

A non-performance-related note on the binary logs: if you want to use the expire_
logs_days option to remove old binary logs automatically, don’t remove them with
rm. The server will get confused and refuse to remove them automatically, and PURGE
MASTER LOGS will stop working. The solution, should you find yourself entangled in this
situation, is to manually resync the hostname-bin.index file with the list of files that still
exist on disk.

We cover RAID in more depth in the next chapter, but it’s worth repeating here that
good-quality RAID controllers, with battery-backed write caches set to use the write-
back policy, can handle thousands of writes per second and still give you durable stor-
age. The data gets written to a fast cache with a battery, so it will survive even if the
system loses power. When the power comes back, the RAID controller will write
the data from the cache to the disk before making the disk available for use. Thus, a
good RAID controller with a large enough battery-backed write cache can improve
performance dramatically and is a very good investment. Of course, solid-state storage
is another option; we also cover that in the next chapter.

MyISAM I/O Configuration
Let’s begin by considering how MyISAM performs I/O for its indexes. MyISAM nor-
mally flushes index changes to disk after every write. If you’re going to make many
modifications to a table, however, it might be faster to batch these writes together.

One way to do this is with LOCK TABLES, which defers writes until you unlock the tables.
This can be a valuable technique for improving performance, because it lets you control
exactly which writes are deferred and when the writes are flushed to disk. You can defer
writes for precisely the statements you want.

Configuring MySQL’s I/O Behavior | 369



You can also defer index writes by using the delay_key_write variable. If you do this,
modified key buffer blocks are not flushed until the table is closed.11 The possible
settings are as follows:

OFF
MyISAM flushes modified blocks in the key buffer (key cache) to disk after every
write, unless the table is locked with LOCK TABLES.

ON
Delayed key writes are enabled, but only for tables created with the DELAY_
KEY_WRITE option.

ALL
All MyISAM tables use delayed key writes.

Delaying key writes can be helpful in some cases, but it doesn’t usually create a big
performance boost. It’s most useful with smaller data sizes, when the key cache’s read
hit ratio is good but the write hit ratio is bad. It also has quite a few drawbacks:

• If the server crashes and the blocks haven’t been flushed to disk, the index will be
corrupt.

• If many writes are delayed, it’ll take longer for MySQL to close a table, because it
will have to wait for the buffers to be flushed to disk. This can cause long table
cache locks in MySQL 5.0.

• FLUSH TABLES can take a long time, for the reason just mentioned. This in turn can
increase the time it takes to run FLUSH TABLES WITH READ LOCK for a logical volume
manager (LVM) snapshot or other backup operation.

• Unflushed dirty blocks in the key buffer might not leave any room in the buffer for
new blocks to be read from disk. Therefore, queries might stall while waiting for
MyISAM to free up some space in the key buffer.

In addition to configuring MyISAM’s index I/O, you can configure how MyISAM tries
to recover from corruption. The myisam_recover option controls how MyISAM looks
for and repairs errors. You have to set this option in the configuration file or at the
command line. You can view, but not change, the option’s value with this SQL state-
ment (this is not a typo—the system variable has a different name from the corre-
sponding command-line option):

mysql> SHOW VARIABLES LIKE 'myisam_recover_options';

Enabling this option instructs MySQL to check MyISAM tables for corruption when it
opens them, and to repair them if problems are found. You can set the following values:

11. The table can be closed for several reasons. For example, the server might close the table because there’s
not enough room in the table cache, or someone might execute FLUSH TABLES.

370 | Chapter 8: Optimizing Server Settings



DEFAULT (or no setting)
Instructs MySQL to try to repair any table that is marked as having crashed or not
marked as having been closed cleanly. The default setting performs no other actions
upon recovery. In contrast to how most variables work, this DEFAULT value is not
an instruction to reset the variable to its compiled-in value; it essentially means “no
setting.”

BACKUP
Makes MySQL write a backup of the data file into a .BAK file, which you can
examine afterward.

FORCE
Makes recovery continue even if more than one row will be lost from the .MYD file.

QUICK
Skips recovery unless there are delete blocks. These are blocks of deleted rows that
are still occupying space and can be reused for future INSERT statements. This can
be useful because MyISAM recovery can take a very long time on large tables.

You can use multiple settings, separated by commas. For example, BACKUP,FORCE will
force recovery and create a backup. This is what we used in our sample configuration
file earlier in this chapter.

We recommend that you enable this option, especially if you have just a few small
MyISAM tables. Running a server with corrupted MyISAM tables is dangerous, because
they can sometimes cause more data corruption and even server crashes. However, if
you have large tables, automatic recovery might be impractical: it causes the server to
check and repair all MyISAM tables when they’re opened, which is inefficient. During
this time, MySQL tends to block connections from performing any work. If you have
a lot of MyISAM tables, it might be a good idea to use a less intrusive process that runs 
CHECK TABLES and REPAIR TABLES after startup.12 Either way, it is very important to check
and repair the tables.

Enabling memory-mapped access to data files is another useful MyISAM option. Mem-
ory mapping lets MyISAM access the .MYD files directly via the operating system’s
page cache, avoiding costly system calls. In MySQL 5.1 and newer, you can enable
memory mapping with the myisam_use_mmap option. Older versions of MySQL use
memory mapping for compressed MyISAM tables only.

Configuring MySQL Concurrency
When you’re running MySQL in a high-concurrency workload, you might run into
bottlenecks you wouldn’t otherwise experience. This section explains how to detect

12. Some Debian systems do this automatically, which is a swing of the pendulum too far in the other
direction. It’s not a good idea to just configure this behavior by default as Debian does; the DBA should
decide.

Configuring MySQL Concurrency | 371



these problems when they happen, and how to get the best performance possible under
these workloads for MyISAM and InnoDB.

InnoDB Concurrency Configuration
InnoDB is designed for high concurrency, and it has improved dramatically in the last
few years, but it’s still not perfect. The InnoDB architecture still shows some roots in
limited-memory, single-CPU, single-disk systems. Some aspects of InnoDB’s perfor-
mance can degrade in high-concurrency situations, and your only recourse is to limit
concurrency. You can use the techniques shown in Chapter 3 to diagnose concurrency
problems.

If you have problems with InnoDB concurrency, the solution is usually to upgrade the
server. In comparison with current versions, older versions such as MySQL 5.0 and
early MySQL 5.1 were an unmitigated disaster under high concurrency. Everything
queued on global mutexes such as the buffer pool mutex, and the server practically
ground to a halt. If you upgrade to one of the newer versions of MySQL, you don’t
need to limit concurrency in most cases.

If you do, here’s how it works. InnoDB has its own “thread scheduler” that controls
how threads enter its kernel to access data, and what they can do once they’re inside
the kernel. The most basic way to limit concurrency is with the innodb_thread_concur
rency variable, which limits how many threads can be in the kernel at once. A value of
0 means there is no limit on the number of threads. If you are having InnoDB concur-
rency problems in older MySQL versions, this variable is the most important one to
configure.13

It’s impossible to name a good value for any given architecture and workload. In theory,
the following formula gives a good value:

concurrency = Number of CPUs * Number of Disks * 2

But in practice, it can be better to use a much smaller value. You will have to experiment
to find the best value for your system.

If more than the allowed number of threads are already in the kernel, a thread can’t
enter the kernel. InnoDB uses a two-phase process to try to let threads enter as
efficiently as possible. The two-phase policy reduces the overhead of context switches
caused by the operating system scheduler. The thread first sleeps for innodb
_thread_sleep_delay microseconds, and then tries again. If it still can’t enter, it goes
into a queue of waiting threads and yields to the operating system.

The default sleep time in the first phase is 10,000 microseconds. Changing this value
can help in high-concurrency environments, when the CPU is underused with a lot of

13. In fact, in some workloads, the system that implements the concurrency limits itself can become a
bottleneck, so sometimes it needs to be enabled, and at other times it needs to be disabled. Profiling will
show you which to do.

372 | Chapter 8: Optimizing Server Settings



threads in the “sleeping before entering queue” status. The default value can also be
much too large if you have a lot of small queries, because it adds 10 milliseconds to
query latency.

Once a thread is inside the kernel, it has a certain number of “tickets” that let it back
into the kernel for “free,” without any concurrency checks. This limits how much work
it can do before it has to get back in line with other waiting threads. The innodb_con
currency_tickets option controls the number of tickets. It rarely needs to be changed
unless you have a lot of extremely long-running queries. Tickets are granted per-query,
not per-transaction. Once a query finishes, its unused tickets are discarded.

In addition to the bottlenecks in the buffer pool and other structures, there’s another
concurrency bottleneck at the commit stage, which is largely I/O-bound because of
flush operations. The innodb_commit_concurrency variable governs how many threads
can commit at the same time. Configuring this option might help if there’s a lot of
thread thrashing even when innodb_thread_concurrency is set to a low value.

Finally, there’s a new solution that might be worth considering: using a thread pool to
limit concurrency. The original thread pool implementation was in the abandoned
MySQL 6.0 source tree, and had serious flaws. But it’s been reimplemented in MariaDB,
and Oracle has recently released a commercial plugin to provide a thread pool for
MySQL 5.5. We don’t have enough experience with either of these to guide you, so
we’ll confuse you further by pointing out that neither implementation seemed to satisfy
Facebook, which has met its unique needs with so-called “admission control” features
in its own private branch of MySQL. Hopefully by the fourth edition of this book
we’ll have some more knowledge to share on thread pools and when they work or don’t
work.

MyISAM Concurrency Configuration
MyISAM allows concurrent inserts and reads under some conditions, and it lets you
“schedule” some operations to try to block as little as possible.

Before we look at MyISAM’s concurrency settings, it’s important to understand how
MyISAM deletes and inserts rows. Delete operations don’t rearrange the entire table;
they just mark rows as deleted, leaving “holes” in the table. MyISAM prefers to fill the
holes if it can, reusing the spaces for inserted rows. If there are no holes, it appends
new rows to the end of the table.

Even though MyISAM has table-level locks, it can append new rows concurrently with
reads. It does this by stopping the reads at the last row that existed when they began.
This avoids inconsistent reads.

However, it is much more difficult to provide consistent reads when something is
changing the middle of the table. MVCC is the most popular way to solve this problem:
it lets readers read old versions of data while writers create new versions. However,

Configuring MySQL Concurrency | 373



MyISAM doesn’t support MVCC as InnoDB does, so it doesn’t support concurrent
inserts unless they go at the end of the table.

You can configure MyISAM’s concurrent insert behavior with the concurrent_insert
variable, which can have the following values:

0
MyISAM allows no concurrent inserts; every insert locks the table exclusively.

1
This is the default value. MyISAM allows concurrent inserts, as long as there are
no holes in the table.

2
This value is available in MySQL 5.0 and newer. It forces concurrent inserts to
append to the end of the table, even when there are holes. If there are no threads
reading from the table, MySQL will place the new rows in the holes. The table can
become more fragmented than usual with this setting.

You can also configure MySQL to delay some operations to a later time, when they can
be combined for greater efficiency. For instance, you can delay index writes with the
delay_key_write variable, which we mentioned earlier in this chapter. This involves
the familiar trade-off: write the index right away (safe but expensive), or wait and hope
the power doesn’t fail before the write happens (faster, but likely to cause massive index
corruption in the event of a crash because the index file will be very out of date).

You can also give INSERT, REPLACE, DELETE, and UPDATE queries lower priority than
SELECT queries with the low_priority_updates option. This is equivalent to globally
applying the LOW_PRIORITY modifier to UPDATE queries. It’s actually a very important
option when you use MyISAM; it lets you get decent concurrency for SELECT queries
that would otherwise starve in the presence of a very small number of queries getting
top priority for write locks.

Finally, even though InnoDB’s scalability issues are more often talked about, MyISAM
has also had problems with mutexes for a long time. In MySQL 4.0 and earlier, a global
mutex protected any I/O to the key buffer, which caused scalability problems with
multiple CPUs and multiple disks. MySQL 4.1’s key buffer code is improved and
doesn’t have this problem anymore, but it still holds a mutex on each key buffer. This
is an issue when a thread copies key blocks from the key buffer into its local storage,
rather than reading from the disk. The disk bottleneck is gone, but there’s still a bot-
tleneck when accessing data in the key buffer. You can sometimes work around this
problem with multiple key buffers, but this approach isn’t always successful. For ex-
ample, there’s no way to solve the problem when it involves only a single index. As a
result, concurrent SELECT queries can perform significantly worse on multi-CPU ma-
chines than on a single-CPU machine, even when these are the only queries running.
MariaDB offers segmented (partitioned) key buffers, which can help significantly when
you experience this problem.

374 | Chapter 8: Optimizing Server Settings



Workload-Based Configuration
One goal of configuring your server is to customize it for your specific workload. This
requires intimate knowledge of the number, type, and frequency of all kinds of server
activities—not just queries, but other activities too, such as connecting to the server
and flushing tables.

The first thing you should do, if you haven’t done it already, is become familiar with
your server. Know what kinds of queries run on it. Monitor it with tools such as inno-
top, and use pt-query-digest to create a query report. It’s helpful to know not only what
your server is doing overall, but what each MySQL query spends a lot of time doing.
Chapter 3 explains how to find this out.

Try to log all queries when your server is running at full capacity, because that’s the
best way to see what kinds of queries suffer most. At the same time, capture snapshots
of the process list and aggregate them by their state or command (innotop can do this
for you, or you can use the scripts shown in Chapter 3). For example, are there a lot of
queries copying results to temporary tables, or sorting results? If so, you might need to
optimize the queries, and potentially look at the configuration settings for temporary
tables and sort buffers.

Optimizing for BLOB and TEXT Workloads
BLOB and TEXT columns are a special type of workload for MySQL. (We’ll refer to all of
the BLOB and TEXT types as BLOB here for simplicity, because they belong to the same
class of data types.) There are several restrictions on BLOB values that make the server
treat them differently from other types. One of the most important considerations is
that the server cannot use in-memory temporary tables for BLOB values.14 Thus, if a
query involving BLOB values requires a temporary table—no matter how small—it will
go to disk immediately. This is very inefficient, especially for otherwise small and fast
queries. The temporary table could be most of the query’s cost.

There are two ways to ease this penalty: convert the values to VARCHAR with the SUB
STRING() function (see Chapter 4 for more on this), or make temporary tables faster.

The best way to make temporary tables faster is to place them on a memory-based
filesystem (tmpfs on GNU/Linux). This removes some overhead, although it’s still
much slower than using in-memory tables. Using a memory-based filesystem is helpful
because the operating system tries to avoid writing data to disk.15 Normal filesystems
are cached in memory too, but the operating system might flush normal filesystem data
every few seconds. A tmpfs filesystem never gets flushed. The tmpfs filesystem is also

14. Recent versions of Percona Server lift this restriction in some cases.

15. Data can still go to disk if the operating system swaps it.

Workload-Based Configuration | 375



designed for low overhead and simplicity. For example, there’s no need for the filesys-
tem to make any provisions for recovery. That makes it faster.

The server setting that controls where temporary tables are placed is tmpdir. Monitor
how full the filesystem gets to ensure you have enough space for temporary tables. If
necessary, you can even specify several temporary table locations, which MySQL will
use in a round-robin fashion.

If your BLOB columns are very large and you use InnoDB, you might also want to
increase InnoDB’s log buffer size. We wrote more about this earlier in this chapter.

For long variable-length columns (e.g., BLOB, TEXT, and long character columns),
InnoDB stores a 768-byte prefix in-page with the rest of the row.16 If the column’s value
is longer than this prefix length, InnoDB might allocate external storage space outside
the row to store the rest of the value. It allocates this space in whole 16 KB pages, just
like all other InnoDB pages, and each column gets its own page (columns do not share
external storage space). InnoDB allocates external storage space to a column a page at
a time until 32 pages are used; then it allocates 64 pages at a time.

Note that we said InnoDB might allocate external storage. If the total length of the row,
including the full value of the long column, is shorter than InnoDB’s maximum row
length (a little less than 8 KB), InnoDB will not allocate external storage even if the long
column’s value exceeds the prefix length.

Finally, when InnoDB updates a long column that is placed in external storage, it
doesn’t update it in place. Instead, it writes the new value to a new location in external
storage and deletes the old value.

All of this has the following consequences:

• Long columns can waste a lot of space in InnoDB. For example, if you store a
column value that is one byte too long to fit in the row, it will use an entire page
to store the remaining byte, wasting most of the page. Likewise, if you have a value
that is slightly more than 32 pages long, it might actually use 96 pages on disk.

• External storage disables the adaptive hash index, which needs to compare the full
length of columns to verify that it has found the right data. (The hash helps InnoDB
find “guesses” very quickly, but it must check that its “guess” is correct.) Because
the adaptive hash index is completely in-memory and is built directly “on top of”
frequently accessed pages in the buffer pool, it doesn’t work with external storage.

• Long values can make any query with a WHERE clause that doesn’t use an index run
slowly. MySQL reads all columns before it applies the WHERE clause, so it might ask
InnoDB to read a lot of external storage, then check the WHERE clause and throw
away all the data it read. It’s never a good idea to select columns you don’t need,

16. This is long enough to create a 255-character index on a column, even if it’s utf8, which might require
up to three bytes per character. This prefix is specific to the Antelope InnoDB file format; it doesn’t apply
to the Barracuda format, which is available in MySQL 5.1 and newer (though not enabled by default).

376 | Chapter 8: Optimizing Server Settings



but this is a special case where it’s even more important to avoid doing so. If you
find your queries are suffering from this limitation, you can try to use covering
indexes to help.

• If you have many long columns in a single table, it might be better to combine the
data they store into a single column, perhaps as an XML document. That lets all
the values share external storage, rather than using their own pages.

• You can sometimes gain significant space and performance benefits by storing long
columns in a BLOB and compressing them with COMPRESS(), or compressing them
in the application before sending them to MySQL.

Optimizing for Filesorts
Recall from Chapter 6 that MySQL has two filesort algorithms. It uses the two-pass
algorithm if the total size of all the columns needed for the query, plus the ORDER BY
columns, exceeds max_length_for_sort_data bytes. It also uses this algorithm when any
of the required columns—even those not used for the ORDER BY—is a BLOB or TEXT
column. (You can use SUBSTRING() to convert such columns to types that can work with
the single-pass algorithm.)

MySQL has two variables that can help you control how it performs filesorts. You can
influence MySQL’s choice of algorithm by changing the value of the max_
length_for_sort_data variable.17 Because the single-pass algorithm creates a fixed-size
buffer for each row it will sort, the maximum length of VARCHAR columns is what counts
toward max_length_for_sort_data, not the actual size of the stored data. This is one of
the reasons why we recommend you make these columns only as large as necessary.

When MySQL has to sort on BLOB or TEXT columns, it uses only a prefix and ignores
the remainder of the values. This is because it has to allocate a fixed-size structure to
hold the values and copy the prefix from external storage into that structure. You can
specify how large this prefix should be with the max_sort_length variable.

Unfortunately, MySQL doesn’t really give you any visibility into which sort algorithm
it uses. If you increase the max_length_for_sort_data variable and your disk usage goes
up, your CPU usage goes down, and the Sort_merge_passes status variable begins to
grow more quickly than it did before the change, you’ve probably forced more sorts to
use the single-pass algorithm.

17. MySQL 5.6 will introduce changes to the way the sort buffer is used in queries with a LIMIT clause and
will fix a problem that caused a large sort buffer to perform an expensive setup routine, so when you
upgrade to MySQL 5.6 you should carefully check any customizations you’ve made to these settings.

Workload-Based Configuration | 377



Completing the Basic Configuration
We’re done with the tour of server internals—hope you enjoyed the trip! Now let’s
return to our sample configuration file and see how to choose values for the settings
that remain.

We’ve already discussed how to choose values for the general settings such as the data
directory, the InnoDB and MyISAM caches, logs, and a few other things. Let’s go over
what remains:

tmp_table_size and max_heap_table_size
These settings control how large an in-memory temporary table using the Memory
storage engine can grow. If an implicit temporary table’s size exceeds either of these
settings, it will be converted to an on-disk MyISAM table so it can keep growing.
(An implicit temporary table is one that you don’t create yourself; the server creates
it for you to hold an intermediate result while executing a query.)

You should simply set both of these variables to the same value. We’ve chosen the
value 32M for our sample configuration file. This might not be enough, but beware
of setting this variable too large. It’s good for temporary tables to live in memory,
but if they’re simply going to be huge, it’s actually best for them to just use on-disk
tables, or you could run the server out of memory.

Assuming that your queries aren’t creating enormous temporary tables (which you
can often avoid with proper indexing and query design), it’s a good idea to set these
variables large enough that you don’t have to go through the process of converting
an in-memory table to an on-disk table. This procedure will show up in the process
list.

You can look at how the server’s SHOW STATUS counters change over time to under-
stand how often you create temporary tables and whether they go to disk. You
can’t tell whether a table was created in memory and then converted to on-disk or
just created on-disk to begin with (perhaps because of a BLOB column), but you can
at least see how often the tables go to disk. Examine the Created_tmp_
disk_tables and Created_tmp_tables variables.

max_connections
This setting acts like an emergency brake to keep your server from being over-
whelmed by a surge of connections from the application. If the application mis-
behaves, or the server encounters a problem such as a stall, a lot of new connections
can be opened. But opening a connection does no good if it can’t execute queries,
so being denied with a “too many connections” error is a way to fail fast and fail
cheaply.

Set max_connections high enough to accommodate the usual load that you think
you’ll experience, as well as a safety margin to permit logging in and administering
the server. For example, if you think you’ll have 300 or so connections in normal
operations, you might set this to 500 or so. If you don’t know how many connec-

378 | Chapter 8: Optimizing Server Settings



tions you’ll get, 500 is not an unreasonable starting point anyway. The default is
100, but that’s not enough for a lot of applications.

Beware also of surprises that might make you hit the limit of connections. For
example, if you restart an application server, it might not close its connections
cleanly, and MySQL might not realize they’ve been closed. When the application
server comes back up and tries to open connections to the database, it might be
refused due to the dead connections that haven’t timed out yet.

Watch the Max_used_connections status variable over time. It is a high-water mark
that shows you if the server has had a spike in connections at some point. If it
reaches max_connections, chances are a client has been denied at least once, and
you should probably use the techniques shown in Chapter 3 to capture server
activity when that occurs.

thread_cache_size
You can compute a reasonable value for this variable by observing the server’s
behavior over time. Watch the Threads_connected status variable and find its
typical maximum and minimum. You might want to set the thread cache large
enough to hold the difference between the peak and off-peak usage, and go ahead
and be generous, because if you set it a bit too high it’s not a big problem. You
might set it two or three times as large as needed to hold the fluctuations in usage.
For example, if the Threads_connected status variable seems to vary between 150
and 175, you could set the thread cache to 75. But you probably shouldn’t set it
very large, because it isn’t really useful to keep around a huge amount of spare
threads waiting for connections; a ceiling of 250 is a nice round number (or 256,
if you prefer a power of two).

You can also watch the change over time in the Threads_created status variable. If
this value is large or increasing, it’s another clue that you might need to increase
the thread_cache_size variable. Check Threads_cached to see how many threads
are in the cache already.

A related status variable is Slow_launch_threads. A large value for this status vari-
able means that something is delaying new threads upon connection. This is a clue
that something is wrong with your server, but it doesn’t really indicate what. It
usually means there’s a system overload, causing the operating system not to
schedule any CPU time for newly created threads. It doesn’t necessarily indicate
that you need to increase the size of the thread cache. You should diagnose the
problem and fix it rather than masking it with a cache, because it might be affecting
other things, too.

table_cache_size
This cache (or the two caches into which it was split in MySQL 5.1) should be set
large enough to keep from reopening and reparsing table definitions all the time.
You can check this by inspecting the value of Open_tables and the change over time
in the value of Opened_tables. If you see many Opened_tables per second, your
table_cache value might not be large enough. Explicit temporary tables can also

Completing the Basic Configuration | 379



cause a growing number of opened tables even when the table cache isn’t fully
used, though, so it might be nothing to worry about. Your clue would be that
Opened_tables grows constantly even though Open_tables isn’t as large as table_
cache_size.

Even if the table cache is useful, you should not set this variable too large. It turns
out that the table cache can be counterproductive in two circumstances.

First, MySQL doesn’t use a very efficient algorithm to check the cache, so if it’s
really big, it can get really slow. You probably shouldn’t set it higher than 10,000
in most cases, or 10,240 if you like those powers of two.18

The second reason to avoid setting this very large is that some workloads simply
aren’t cacheable. If the workload isn’t cacheable, and everything is going to be a
cache miss no matter how large you make the cache, forget the cache and set it to
zero! This helps you avoid making the situation worse; a cache miss is better than
an expensive cache check followed by a cache miss. What kinds of workloads aren’t
cacheable? If you have tens or hundreds of thousands of tables and you use them
all pretty uniformly, you probably can’t cache them all, and you’re better off setting
this variable small. This is sometimes appropriate on systems that have a very large
number of collocated applications, none of which is very busy.

A reasonable starting value for this setting is 10 times as big as max_connections,
but again, keep it under 10,000 or so in most cases.

There are several other kinds of settings that you will frequently include in your con-
figuration file, including binary logging and replication settings. Binary logging is useful
for enabling point-in-time recovery and for replication, and replication has a few set-
tings of its own. We’ll cover the important settings in the chapters on replication and
backups, later in this book.

Safety and Sanity Settings
After your basic configuration settings are in place, you might wish to enable a number
of settings that make the server safer and more reliable. Some of them influence per-
formance, because safety and reliability are often more costly to guarantee. Some are
just sensible, however: they prevent silly mistakes such as inserting nonsensical data
into the server. And some don’t make a difference in day-to-day operation, but prevent
bad things from happening in edge cases.

Let’s look at a collection of useful options for general server behavior first:

18. Have you heard the joke about powers of two? There are 10 types of people in the world: those who
understand binary, and those who don’t. There are also another 10 types of people: those who think
binary/decimal jokes are funny, and those who have sex. We won’t say whether or not we think that’s
hilarious.

380 | Chapter 8: Optimizing Server Settings



expire_logs_days
If you enable binary logging, you should enable this option, which causes the server
to purge old binary logs after the specified number of days. If you don’t enable it,
you will eventually run the server out of disk space, and it will freeze or crash. We
suggest setting this option large enough that you can recover from at least two
backups ago (in case the most recent backup fails). Even if you take backups every
day, still leave yourself at least 7 to 14 days’ worth of binary logs. Our experience
shows that you’ll be grateful for a week or two of binary logs when you have some
unusual problem, such as rebuilding a replica and then trying to get it caught up
again with the master. You want to keep enough binary logs around to give yourself
some breathing room for operations such as these.

max_allowed_packet
This setting prevents the server from sending too large a packet, and also controls
how large a packet it will accept. The default is probably too small, but it can also
be set dangerously large. If it’s set too small, sometimes problems can occur in
replication, typically when the replica can’t retrieve data from the master that it
needs for replication. You might increase the setting from its default to 16 MB or so.

It’s not documented, but this option also controls the maximum size of a user-
defined variable, so if you need very large variables, be careful—they can be trun-
cated or set to NULL if they exceed the size of this variable.

max_connect_errors
If something goes wrong with your networking for a moment, there is an applica-
tion or configuration error, or there is another problem such as privileges that
prevent connections from completing successfully for a brief period of time, clients
can get blacklisted and will be unable to connect again until you flush the host
cache. The default setting for this option is so small that this problem can happen
too easily. You might want to increase it, and in fact, if you know that the server
is adequately secured against brute-force attacks, you can just make it very large
to effectively disable host blacklisting.

skip_name_resolve
This setting disables another networking- and authentication-related trap: DNS
lookups. DNS is one of the weak points in MySQL’s connection process. When
you connect to the server, by default it tries to determine the hostname from which
you’re connecting and uses that as part of the authentication credentials. (That
is, your credentials are your username, hostname, and password—not just your
username and password.) But to verify your hostname, the server needs to perform
both a reverse and a forward DNS lookup. This is all fine until DNS starts to have
problems, which is pretty much a certainty at some point in time. When that hap-
pens, everything piles up and eventually the connection times out. To prevent this,
we strongly recommend that you set this option, which disables DNS lookups
during authentication. However, if you do this you will need to convert all of your

Safety and Sanity Settings | 381



hostname-based grants to use IP addresses, wildcards, or the special hostname
“localhost,” because hostname-based accounts will be disabled.

sql_mode
This setting can accept a variety of options that modify server behavior. We don’t
recommend changing these just for the fun of it; it’s better to let MySQL be MySQL
in most ways and not try to make it behave like other database servers. (Many client
and GUI tools expect MySQL to have its own flavor of SQL, for example, so if you
change it to speak more ANSI-compliant SQL some things might break.) However,
several of the settings are very useful, and some might be worth considering in your
specific cases. You might want to look at the documentation for the following
options and consider using them: STRICT_TRANS_TABLES, ERROR_FOR_DIVISION_BY
_ZERO, NO_AUTO_CREATE_USER, NO_AUTO_VALUE_ON_ZERO, NO_ENGINE_SUBSTITUTION,
NO_ZERO_DATE, NO_ZERO_IN_DATE, and ONLY_FULL_GROUP_BY.

However, be aware that it might not be a good idea to change these settings for
existing applications, because doing so might make the server incompatible with
the application’s expectations. It’s pretty common for people to unwittingly write
queries that refer to columns not in the GROUP BY clause or use aggregate functions,
for example, so if you want to enable the ONLY_FULL_GROUP_BY option it’s a good
idea to do it in a development or staging server first, and only deploy it in produc-
tion once you’re sure everything is working.

sysdate_is_now
This is another setting that might be backward-incompatible with applications’
expectations. But if you don’t explicitly desire the SYSDATE() function to have non-
deterministic behavior, which can break replication and make point-in-time re-
covery from backups unreliable, you might want to enable this option and make
its behavior deterministic.

A few options control replication behavior and are very helpful for preventing problems
on replicas:

read_only
This option prevents unprivileged users from making changes on replicas, which
should be receiving changes only from the master, not from the application. We
strongly recommend setting replicas to read-only mode.

skip_slave_start
This option prevents MySQL from taking the bit between its teeth and attempting
to start replication automatically. You want to disable automatic starting because
it is unsafe after a crash or other problem; a human needs to examine the server
manually and determine that it is safe to start replication.

slave_net_timeout
This option controls how long it’ll be before a replica notices that its connection
to its master has failed and needs to be reconnected. The default option, one hour,
is way too long. Set it to a minute or less.

382 | Chapter 8: Optimizing Server Settings



sync_master_info, sync_relay_log, and sync_relay_log_info
These options, available in MySQL 5.5 and newer, correct longstanding problems
with replicas: they don’t sync their status files to disk, so if the server crashes it can
be anyone’s guess what the replica’s position relative to the master actually was,
and there can be corruption in the relay logs. These options make replicas much
more likely to be recoverable after a crash. They are not enabled by default, because
they cause extra fsync() operations on replicas, which can slow them down. We
suggest enabling these options if you have decent hardware, and disabling them if
there is a problem with replication that you can trace to latency caused by fsync().

There’s a less intrusive way to do this in Percona Server, enabled with the
innodb_overwrite_relay_log_info option. This makes InnoDB store the replica-
tion position in the InnoDB transaction logs, which is fully transactional and
doesn’t require any extra fsync() operations. During crash recovery, InnoDB will
check the replication metadata files and update them to have the correct position
if they’re out of date.

Advanced InnoDB Settings
Recall our discussion of InnoDB’s history in Chapter 1: it was first built in, then avail-
able in two versions, and now the newer version of the engine is once again built into
the server. The newer InnoDB code has more features and is much more scalable. If
you’re using MySQL 5.1, you should configure MySQL explicitly to ignore the old
version of InnoDB and use the newer version. It will improve server performance
greatly. You’ll need to enable the ignore_builtin_innodb option, and then configure
the plugin_load option to enable InnoDB as a plugin. Consult the InnoDB manual for
the exact syntax for your platform.19

Several options are available in the newer version of InnoDB, once you’ve enabled it.
Some of these are quite important for server performance, and there are also a couple
of safety and sanity options:

innodb
This rather innocuous-looking option is actually very important. If you set its value
to FORCE, the server will not be able to start unless InnoDB can start. If you use
InnoDB as your default storage engine, this is definitely what you want. You do
not want the server to start when InnoDB fails because of some error such as a
misconfiguration, because a badly behaved application could then connect to the
server and cause who knows what harm and confusion. It’s much better for the
server to fail as a whole, which will force you to look at the error log instead of
believing that the server started okay.

19. In Percona Server, there’s only one version of InnoDB and it’s built in, so you don’t need to disable one
version and load another one to replace it.

Advanced InnoDB Settings | 383



innodb_autoinc_lock_mode
This option controls how InnoDB generates autoincrementing primary key values,
which can be a bottleneck in some cases, such as high-concurrency inserts. If you
have many transactions waiting on the autoincrement lock (you can see this in 
SHOW ENGINE INNODB STATUS), you should investigate this setting. We won’t repeat
the manual’s explanation of the options and their behaviors.

innodb_buffer_pool_instances
This setting divides the buffer pool into multiple segments in MySQL 5.5 and
newer, and is probably one of the most important ways to improve MySQL’s scal-
ability on multicore machines with a highly concurrent workload. Multiple buffer
pools partition the workload so that some of the global mutexes are not such hot
contention points.

It is not yet clear what kind of guidelines we should develop for choosing the num-
ber of buffer pool instances. We have run most of our benchmarks with eight
instances, but we probably won’t understand some of the subtleties of multiple
buffer pool instances until MySQL 5.5 has been deployed more widely for a longer
time.

We don’t mean that to imply that MySQL 5.5 isn’t deployed widely in production.
It’s just that the most extreme cases of mutex contention we’ve helped solve have
been for very large, very conservative users, for whom an upgrade can require many
months to plan, validate, and execute. These users are sometimes running a highly
customized version of MySQL, which makes it doubly important for them to be
careful with upgrades. When more of these folks upgrade to MySQL 5.5 and stress
it in their own unique ways, we’ll probably learn some interesting things about
multiple buffer pools that we haven’t seen yet. Until then, we can say that it appears
to be very beneficial to run with eight buffer pool instances.

It’s worth noting that Percona Server takes a different approach to solving InnoDB’s
mutex contention issues. Instead of partitioning the buffer pool—an admittedly
tried-and-true approach in many systems like InnoDB—we opted to divide some
of the global mutexes into smaller, more special-purpose mutexes. Our bench-
marks show that the best improvement of all comes from a combination of the two
approaches, which is available in Percona Server version 5.5: multiple buffer pools
and more fine-grained mutexes.

innodb_io_capacity
InnoDB used to be hardcoded to assume that it ran on a single hard disk capable
of 100 I/O operations per second. This was a bad default. Now you can inform
InnoDB how much I/O capacity is available to it. InnoDB sometimes needs this
set quite high (tens of thousands on extremely fast storage such as PCI-E flash
devices) to flush dirty pages in a steady fashion, for reasons that are quite complex
to explain.

384 | Chapter 8: Optimizing Server Settings



innodb_read_io_threads and innodb_write_io_threads
These options control how many background threads are available for I/O opera-
tions. The default in recent versions of MySQL is to have four read threads and
four write threads, which is enough for a lot of servers, especially with the native
asynchronous I/O available in MySQL 5.5. If you have many hard drives and a
high-concurrency workload, and you see that the threads are having a hard time
keeping up, you can increase the number of threads, or you can simply set them
to the number of physical spindles you have for I/O (even if they’re behind a RAID
controller).

innodb_strict_mode
This setting makes InnoDB throw errors instead of warnings for some conditions,
especially invalid or possibly dangerous CREATE TABLE options. If you enable this
option, be certain to check all of your CREATE TABLE options, because it might not
let you create some tables that used to be fine. Sometimes it’s a bit pessimistic and
overly restrictive. You wouldn’t want to find this out when you were trying to
restore a backup.

innodb_old_blocks_time
InnoDB has a two-part buffer pool least recently used (LRU) list, which is designed
to prevent ad hoc queries from evicting pages that are used many times over the
long term. A one-off query such as those issued by mysqldump will typically bring
a page into the buffer pool LRU list, read the rows from it, and move on to the next
page. In theory, the two-part LRU list will prevent this page from displacing pages
that will be needed for a long time by placing it into the “young” sublist and only
moving it to the “old” sublist after it has been accessed multiple times. But InnoDB
is not configured to prevent this by default, because the page has multiple rows,
and thus the multiple accesses to read rows from the page will cause it to be moved
to the “old” sublist immediately, placing pressure on pages that need a long life-
time. This variable specifies the number of milliseconds that must elapse before a
page can move from the “young” part of the LRU list to the “old” part. It’s set to
0 by default, and setting it to a small value such as 1000 (one second) has proven
very effective in our benchmarks.

Summary
After you’ve worked through this chapter, you should have a server configuration that
is much better than the defaults. Your server should be fast and stable, and you should
not need to tweak the configuration unless you run into an unusual circumstance.

To review, we suggest that you begin with our sample configuration file, set the basic
options for your server and workload, add safety and sanity options as desired, and, if
appropriate, configure the new options available in the InnoDB plugin and in MySQL
5.5. That’s really all you need to do.

Summary | 385



The most important options are these two, assuming that you use InnoDB, which most
people should:

• innodb_buffer_pool_size

• innodb_log_file_size

Congratulations—you just solved the vast majority of real-world configuration prob-
lems we’ve seen! If you use our configuration tool at http://tools.percona.com, you will
get good suggestions for a starting point on these and other configuration options.

We’ve also made a lot of suggestions about what not to do. The most important of
these are not to “tune” your server; not to use ratios, formulas, or “tuning scripts” as
a basis for setting the configuration variables; not to trust advice from unknown people
on the Internet; and not to go hunting in SHOW STATUS counters for things that look bad.
If something is actually wrong, it’ll show up in your server profiling.

There are a few significant settings we didn’t discuss in this chapter, which are impor-
tant for specific types of hardware and workloads. We delayed discussion of these
settings because we believe that any advice on settings needs to be paired with an
explanation of the internal processes at work. This brings us to the next chapter, which
will show you how to optimize your hardware and operating system for MySQL, and
vice versa.

386 | Chapter 8: Optimizing Server Settings

http://tools.percona.com


Index

Symbols
32-bit architecture, 390
404 errors, 614, 617
451 Group, 549
64-bit architecture, 390
:= assign operator, 249
@ user variable, 253
@@ system variable, 334

A
ab tool, Apache, 51
Aborted_clients variable, 688
Aborted_connects variable, 688
access time, 398
access types, 205, 727
ACID transactions, 6, 551
active caches, 611
active data, keeping separate, 554
active-active access, 574
Adaptec controllers, 405
adaptive hash indexes, 154, 703
Adaptive Query Localization, 550, 577
Address Resolution Protocol (ARP), 560, 584
Adminer, 666
admission control features, 373
advanced performance control, 763
after-action reviews, 571
aggregating sharded data, 755
Ajax, 607
Aker, Brian, 296, 679
Akiban, 549, 552
algebraic equivalence rules, 217
algorithms, load-balancing, 562
ALL_O_DIRECT variable, 363

ALTER TABLE command, 11, 28, 141–144,
266, 472, 538

Amazon EBS (Elastic Block Store), 589, 595
Amazon EC2 (Elastic Compute Cloud), 589,

595–598
Amazon RDS (Relational Database Service),

589, 600
Amazon Web Services (AWS), 589
Amdahl scaling, 525
Amdahl’s Law, 74, 525
ANALYZE TABLE command, 195
ANSI SQL isolation levels, 8
Apache ab, 51
application-level optimization

alternatives to MySQL, 619
caching, 611–618
common problems, 605–607
extending MySQL, 618
finding the optimal concurrency, 609
web server issues, 608

approximations, 243
Archive storage engine, 19, 220
Aria storage engine, 23, 681
ARP (Address Resolution Protocol), 560, 584
Aslett, Matt, 549
Aspersa (see Percona Toolkit)
asynchronous I/O, 702
asynchronous replication, 447
async_unbuffered, 364
atomicity, 6
attributes, 749, 760
audit plugins, 297
auditing, 622
authentication plugins, 298
auto-increment keys, 578

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

771



AUTOCOMMIT mode, 10
autogenerated schemas, 131
AUTO_INCREMENT, 142, 275, 505, 545
availability zone, 572
AVG() function, 139
AWS (Amazon Web Services), 589

B
B-Tree indexes, 148, 171, 197, 217, 269
Background Patrol Read, 418
Backup & Recovery (Preston), 621
backup load, 626
backup time, 626
backup tools

Enterprise Backup, MySQL, 658
mydumper, 659
mylvmbackup, 659
mysqldump, 660
Percona XtraBackup, 658
Zmanda Recovery Manager, 659

backups, 425, 621
binary logs, 634–636
data, 637–648
designing a MySQL solution, 624–634
online or offline, 625
reasons for, 622
and replication, 449
scripting, 661–663
snapshots not, 646
and storage engines, 24
tools for, 658–661

balanced trees, 223
Barth, Wolfgang, 668
batteries in SSDs, 405
BBU (battery backup unit), 422
BEFORE INSERT trigger, 287
Beginning Database Design (Churcher), 115
Bell, Charles, 519
Benchmark Suite, 52, 55
BENCHMARK() function, 53
benchmarks, 35–37

analyzing results, 47
capturing system performance and status,

44
common mistakes, 40, 340
design and planning, 41
examples, 54–66
file copy, 718
flash memory, 403

getting accurate results, 45
good uses for, 340
how long to run, 42
iterative optimization by, 338
MySQL versions read-only, 31
plotting, 49
SAN, 423
strategies, 37–40
tactics, 40–50
tools, 51–53
what to measure, 38

BerkeleyDB, 30
BIGINT type, 117
binary logs

backing up, 634–636
format, 635
master record changes (events), 449, 496
purging old logs safely, 636
status, 688

binlog dump command, 450, 474
binlog_do_db variable, 466
binlog_ignore_db variable, 466
Birthday Paradox, 156
BIT type, 127
bit-packed data types, 127
bitwise operations, 128
Blackhole storage engine, 20, 475, 480
blktrace, 442
BLOB type, 21, 121, 375
blog, MySQL Performance, 23
BoardReader.com, 765, 768
Boolean full-text searches, 308
Boost library, 682
Bouman, Roland, 281, 287, 667
buffer pool

InnoDB, 704
size of, 344

buffer threads, 702
built-in MySQL engines, 19–21
bulletin boards, 27
burstable capacity, 42
bzip2, 716

C
cache hits, 53, 316, 340, 395
CACHE INDEX command, 351
cache tables, 136
cache units, 396
cachegrind, 78

772 | Index



caches
allocating memory for, 349
control policies, 614
hierarchy, 393, 616
invalidations, 322
misses, 321, 352, 397
RAID, 419
read-ahead data, 421
tuning by ratio, 340
writes, 421

Cacti, 430, 669
Calpont InfiniDB, 23
capacitors in SSDs, 405
capacity planning, 425, 482
cardinality, 160, 215
case studies

building a queue table, 256
computing the distance between points,

258
diagnostics, 102–110
indexing, 189–194
using user-defined functions, 262

CD-ROM applications, 27
Change Data Capture (CDC) utilities, 138
CHANGE MASTER TO command, 453, 457,

489, 491, 501
CHAR type, 120
character sets, 298, 301–305, 330
character_set_database, 300
CHARSET() function, 300
CHAR_LENGTH() function, 304
CHECK OPTION variable, 278
CHECK TABLES command, 371
CHECKSUM TABLE command, 488
chunk size, 419
Churcher, Clare, 115
Circonus, 671
circular replication, 473
Cisco server, 598
client, returning results to, 228
client-side emulated prepared statements, 295
client/server communication settings, 299
cloud, MySQL in the, 589–602

benchmarks, 598
benefits and drawbacks, 590–592
DBaaS, 600
economics, 592
four fundamental resources, 594
performance, 595–598

scaling and HA, 591
Cluster Control, SeveralNines, 577
Cluster, MySQL, 576
clustered indexes, 17, 168–176, 397, 657
clustering, scaling by, 548
Clustrix, 549, 565
COALESCE() function, 254
code

backing up, 630
stored, 282–284, 289

Codership Oy, 577
COERCIBILITY() function, 300
cold or warm copy, 456
Cole, Jeremy, 85
collate clauses, 300
COLLATION() function, 300
collations, 119, 298, 301–305
collisions, hash, 156
column-oriented storage engines, 22
command counters, 689
command-line monitoring with innotop, 672–

676
command-line utilities, 666
comments

stripping before compare, 316
version-specific, 289

commercial monitoring systems, 670
common_schema, 187, 667
community storage engines, 23
complete result sets, 315
COMPRESS() function, 377
compressed files, 715
compressed MyISAM tables, 19
computations

distance between points, 258–262
integer, 117
temporal, 125

Com_admin_commands variable, 689
CONCAT() function, 750, 767
concurrency

control, 3–6
inserts, 18
measuring, 39
multiversion concurrency control (MVCC),

12
need for high, 596

configuration
by cache hit ratio, 340
completing basic, 378–380

Index | 773



creating configuration files, 342–347
InnoDB flushing algorithm, 412
memory usage, 347–356
MySQL concurrency, 371–374
workload-based, 375–377

connection management, 2
connection pooling, 561, 607
connection refused error, 429
connection statistics, 688
CONNECTION_ID() function, 257, 289, 316,

502, 635
consistency, 7
consolidation

scaling by, 547
storage, 407, 425

constant expressions, 217
Continuent Tungsten Replicator, 481, 516
CONVERT() function, 300
Cook, Richard, 571
correlated subqueries, 229–233
corrupt system structures, 657
corruption, finding and repairing, 194, 495–

498
COUNT() function optimizations, 206, 217,

241–243, 292
counter tables, 139
counters, 686, 689
covering indexes, 177–182, 218
CPU-bound machines, 442
CPUs, 56, 70, 388–393, 594, 598
crash recovery, 25
crash testing, 422
CRC32() function, 156, 541
CREATE and SELECT conversions, 28
CREATE INDEX command, 353
CREATE TABLE command, 184, 266, 353,

476, 481
CREATE TEMPORARY TABLE command,

689
cron jobs, 288, 585, 630
crontab, 504
cross-data center replication, 475
cross-shard queries, 535, 538
CSV format, 638
CSV logging table, 601
CSV storage engine, 20
CURRENT_DATE() function, 316
CURRENT_USER() function, 316, 460
cursors, 290

custom benchmark suite, 339
custom replication solutions, 477–482

D
daemon plugins, 297
dangling pointer records, 553
data

archiving, 478, 509
backing up nonobvious, 629
changes on the replica, 500
consistency, 632
deduplication, 631
dictionary, 356
distribution, 448
fragmentation, 197
loss, avoiding, 553
optimizing access to, 202–207
scanning, 269
sharding, 533–547, 565, 755
types, 115
volume of and search engine choice, 27

Data Definition Language (DDL), 11
Data Recovery Toolkit, 195
data types

BIGINT, 117
BIT, 127
BLOB, 21, 121, 375
CHAR, 120
DATETIME, 117, 126
DECIMAL, 118
DOUBLE, 118
ENUM, 123, 130, 132, 282
FLOAT, 118
GEOMETRY, 157
INT, 117
LONGBLOB, 122
LONGTEXT, 122
MEDIUMBLOB, 122
MEDIUMINT, 117
MEDIUMTEXT, 122
RANGE COLUMNS, 268
SET, 128, 130
SMALLBLOB, 122
SMALLINT, 117
SMALLTEXT, 122
TEXT, 21, 121, 375
TIMESTAMP, 117, 126, 631
TINYBLOB, 122
TINYINT, 117

774 | Index



TINYTEXT, 122
VARCHAR, 119, 124, 131, 513

data=journal option, 433
data=ordered option, 433
data=writeback option, 433
Database as a Service (DBaaS), 589, 600
database servers, 393
Database Test Suite, 52
Date, C. J., 255
DATETIME type, 117, 126
DBaaS (Database as a Service), 589, 600
dbShards, 547, 549
dbt2 tool, 52, 61
DDL (Data Definition Language), 11
deadlocks, 9
Debian, 683
debug symbols, 99
debugging locks, 735–744
DECIMAL type, 118
deduplication, data, 631
“degraded” mode, 485
DELAYED hint, 239
delayed key writes, 19
delayed replication, 654
DELETE command, 267, 278
delimited file backups, 638, 651
DeNA, 618
denormalization, 133–136
dependencies on nonreplicated data, 501
derived tables, 238, 277, 725
DETERMINISTIC variable, 284
diagnostics, 92

capturing diagnostic data, 97–102
case study, 102–110
single-query versus server-wide problems,

93–96
differential backups, 630
directio() function, 362
directory servers, 542
dirty reads, 8
DISABLE KEYS command, 143, 313
disaster recovery, 622
disk queue scheduler, 434
disk space, 511
disruptive innovations, 31
DISTINCT queries, 135, 219, 244
distributed (XA) transactions, 313
distributed indexes, 754
distributed memory caches, 613

distributed replicated block device (DRBD),
494, 568, 574, 581

distribution master and replicas, 474
DNS (Domain Name System), 556, 559, 572,

584
document pointers, 306
Domain Name System (DNS), 556, 559, 572,

584
DorsalSource, 683
DOUBLE type, 118
doublewrite buffer, 368, 412
downtime, causes of, 568
DRBD (distributed replicated block device),

494, 568, 574, 581
drinking from the fire hose, 211
Drizzle, 298, 682
DROP DATABASE command, 624
DROP TABLE command, 28, 366, 573, 652
DTrace, 431
dump and import conversions, 28
duplicate indexes, 185–187
durability, 7
DVD-ROM applications, 27
dynamic allocation, 541–543
dynamic optimizations, 216
dynamic SQL, 293, 335–337

E
early termination, 218
EBS (Elastic Block Store), Amazon, 589, 595
EC2 (Elastic Compute Cloud), 589, 595–598
edge side (ESI), 608
Elastic Block Store (EBS), Amazon, 589, 595
Elastic Compute Cloud (EC2), Amazon, 589,

595–598
embedded escape sequences, 301
eMLC (enterprise MLC), 402
ENABLE KEYS command, 313
encryption overhead, avoiding, 716
end_log_pos, 635
Enterprise Backup, MySQL, 457, 624, 627, 631,

658
enterprise MLC (eMLC), 402
Enterprise Monitor, MySQL, 80, 670
ENUM type, 123, 130, 132, 282
equality propagation, 219, 234
errors

404 error, 614, 617
from data corruption or loss, 495–498

Index | 775



ERROR 1005, 129
ERROR 1168, 275
ERROR 1267, 300

escape sequences, 301
evaluation order, 253
Even Faster Websites (Souders), 608
events, 282, 288
exclusive locks, 4
exec_time, 636
EXISTS operator, 230, 232
expire_logs_days variable, 381, 464, 624, 636
EXPLAIN command, 89, 165, 182, 222, 272,

277, 719–733
explicit allocation, 543
explicit invalidation, 614
explicit locking, 11
external XA transactions, 315
extra column, 732

F
Facebook, 77, 408, 592
fadvise() function, 626
failback, 582
failover, 449, 582, 585
failures, mean time between, 570
Falcon storage engine, 22
fallback, 582
fast warmup feature, 351
FathomDB, 602
FCP (Fibre Channel Protocol), 422
fdatasync() function, 362
Federated storage engine, 20
Fedora, 683
fencing, 584
fetching mistakes, 203
Fibre Channel Protocol (FCP), 422
FIELD() function, 124, 128
FILE () function, 600
FILE I/O, 702
files

consistency of, 633
copying, 715
descriptors, 690
transferring large, 715–718

filesort, 226, 377
filesystems, 432–434, 573, 640–648
filtered column, 732
filtering, 190, 466, 564, 750, 761
fincore tool, 353

FIND_IN_SET() function, 128
fire hose, drinking from the, 211
FIRST() function, 255
first-write penalty, 595
Five Whys, 571
fixed allocation, 541–543
flapping, 583
flash storage, 400–414
Flashcache, 408–410
Flexviews tools, 138, 280
FLOAT type, 118
FLOOR() function, 260
FLUSH LOGS command, 492, 630
FLUSH QUERY CACHE command, 325
FLUSH TABLES WITH READ LOCK

command, 355, 370, 490, 494, 626,
644

flushing algorithm, InnoDB, 412
flushing binary logs, 663
flushing log buffer, 360, 703
flushing tables, 663
FOR UPDATE hint, 240
FORCE INDEX hint, 240
foreign keys, 129, 281, 329
Forge, MySQL, 667, 710
FOUND_ROWS() function, 240
fractal trees, 22, 158
fragmentation, 197, 320, 322, 324
free space fragmentation, 198
FreeBSD, 431, 640
“freezes”, 69
frequency scaling, 392
.frm file, 14, 142, 354, 711
FROM_UNIXTIME() function, 126
fsync() function, 314, 362, 368, 656, 693
full-stack benchmarking, 37, 51
full-text searching, 157, 305–313, 479

on BoardReader.com, 765
Boolean full-text searches, 308
collection, 306
on Mininova.org, 764
parser plugins, 297
Sphinx storage engine, 749

functional partitioning, 531, 564
furious flushing, 49, 704, 706
Fusion-io, 407

G
Galbraith, Patrick, 296

776 | Index



Galera, 549, 577, 579
Ganglia, 670
garbage collection, 401
GDB stack traces, 99
gdb tool, 99–100
general log, 81
GenieDB, 549, 551
Gentoo, 683
GEOMETRY type, 157
geospatial searches, 25, 157, 262
GET_LOCK() function, 256, 288
get_name_from_id() function, 613
Gladwell, Malcom, 571
glibc libraries, 348
global locks, 736, 738
global scope, 333
global version/session splits, 558
globally unique IDs (GUIDs), 545
gnuplot, 49, 96
Goal (Goldratt), 526, 565
Goal-Driven Performance Optimization white

paper, 70
GoldenGate, Oracle, 516
Goldratt, Eliyahu M., 526, 565
Golubchik, Sergei, 298
Graphite, 670
great-circle formula, 259
GREATEST() function, 254
grep, 638
Grimmer, Lenz, 659
Groonga storage engine, 23
Groundwork Open Source, 669
GROUP BY queries, 135, 137, 163, 244, 312,

752
group commit, 314
Grouply.com, 769
GROUP_CONCAT() function, 230
Guerrilla Capacity Planning (Gunther), 525,

565
GUID values, 545
Gunther, Neil J., 525, 565
gunzip tool, 716
gzip compression, 609, 716, 718

H
Hadoop, 620
handler API, 228
handler operations, 228, 265, 690
HandlerSocket, 618

HAProxy, 556
hard disks, choosing, 398
hardware and software RAID, 418
hardware threads, 388
hash codes, 152
hash indexes, 21, 152
hash joins, 234
Haversine formula, 259
header, 693
headroom, 573
HEAP tables, 20
heartbeat record, 487
HEX() function, 130
Hibernate Core interfaces, 547
Hibernate Shards, 547
high availability

achieving, 569–572
avoiding single points of failure, 572–581
defined, 567
failover and failback, 581–585

High Availability Linux project, 582
high bits, 506
High Performance Web Sites (Souders), 608
high throughput, 389
HIGH_PRIORITY hint, 238
hit rate, 322
HiveDB, 547
hot data, segregating, 269
“hot” online backups, 17
How Complex Systems Fail (Cook), 571
HTTP proxy, 585
http_load tool, 51, 54
Hutchings, Andrew, 298
Hyperic HQ, 669
hyperthreading, 389

I
I/O

benchmark, 57
InnoDB, 357–363
MyISAM, 369–371
performance, 595
slave thread, 450

I/O-bound machines, 443
IaaS (Infrastructure as a Service), 589
.ibd files, 356, 366, 648
Icinga, 668
id column, 723
identifiers, choosing, 129–131

Index | 777



idle machine’s vmstat output, 444
IF() function, 254
IfP (instrumentation-for-php), 78
IGNORE INDEX hint, 165, 240
implicit locking, 11
IN() function, 190–193, 219, 260
incr() function, 546
incremental backups, 630
.index files, 464
index-covered queries, 178–181
indexer, Sphinx, 756
indexes

benefits of, 158
case study, 189–194
clustered, 168–176
covering, 177–182
and locking, 188
maintaining, 194–198
merge optimizations, 234
and mismatched PARTITION BY, 270
MyISAM storage engine, 143
order of columns, 165–168
packed (prefix-compressed), 184
reducing fragmentation, 197
redundant and duplicate, 185–187
and scans, 182–184, 269
statistics, 195, 220
strategies for high performance, 159–168
types of, 148–158
unused, 187

INET_ATON() function, 131
INET_NTOA() function, 131
InfiniDB, Calpont, 23
info() function, 195
Infobright, 22, 28, 117, 269
INFORMATION_SCHEMA tables, 14, 110,

297, 499, 742–744
infrastructure, 617
Infrastructure as a Service (IaaS), 589
Ingo, Henrik, 515, 683
inner joins, 216
Innobase Oy, 30
InnoDB, 13, 15

advanced settings, 383–385
buffer pool, 349, 711
concurrency configuration, 372
crash recovery, 655–658
data dictionary, 356, 711
data layout, 172–176

Data Recovery Toolkit, 195
and deadlocks, 9
and filesystem snapshots, 644–646
flushing algorithm, 412
Hot Backup, 457, 658
I/O configuration, 357–363, 411
lock waits in, 740–744
log files, 411
and query cache, 326
release history, 16
row locks, 188
tables, 710, 742
tablespace, 364
transaction log, 357, 496

InnoDB locking selects, 503
innodb variable, 383
InnoDB-specific variables, 692
innodb_adaptive_checkpoint variable, 412
innodb_analyze_is_persistent variable, 197,

356
innodb_autoinc_lock_mode variable, 177,

384
innodb_buffer_pool_instances variable, 384
innodb_buffer_pool_size variable, 348
innodb_commit_concurrency variable, 373
innodb_concurrency_tickets variable, 373
innodb_data_file_path variable, 364
innodb_data_home_dir variable, 364
innodb_doublewrite variable, 368
innodb_file_io_threads variable, 702
innodb_file_per_table variable, 344, 362, 365,

414, 419, 648, 658
innodb_flush_log_at_trx_commit variable,

360, 364, 369, 418, 491, 508
innodb_flush_method variable, 344, 361, 419,

437
innodb_flush_neighbor_pages variable, 412
innodb_force_recovery variable, 195, 657
innodb_io_capacity variable, 384, 411
innodb_lazy_drop_table variable, 366
innodb_locks_unsafe_for_binlog variable,

505, 508
innodb_log_buffer_size variable, 359
innodb_log_files_in_group variable, 358
innodb_log_file_size variable, 358
innodb_max_dirty_pages_pct variable, 350
innodb_max_purge_lag variable, 367
innodb_old_blocks_time variable, 385
innodb_open_files variable, 356

778 | Index



innodb_overwrite_relay_log_info variable,
383

innodb_read_io_threads variable, 385, 702
innodb_recovery_stats variable, 359
innodb_stats_auto_update variable, 197
innodb_stats_on_metadata variable, 197, 356
innodb_stats_sample_pages variable, 196
innodb_strict_mode variable, 385
innodb_support_xa variable, 314, 330
innodb_sync_spin_loops variable, 695
innodb_thread_concurrency variable, 101,

372
innodb_thread_sleep_delay variable, 372
innodb_use_sys_stats_table variable, 197, 356
innodb_version variable, 742
innodb_write_io_threads variable, 385, 702
innotop tool, 500, 672, 693
INSERT ... SELECT statements, 28, 240, 488,

503
insert buffer, 413, 703
INSERT command, 267, 278
INSERT ON DUPLICATE KEY UPDATE

command, 252, 682
insert-to-select rate, 323
inspecting server status variables, 346
INSTEAD OF trigger, 278
instrumentation, 73
instrumentation-for-php (IfP), 78
INT type, 117
integer computations, 117
integer types, 117, 130
Intel X-25E drives, 404
Intel Xeon X5670 Nehalem CPU, 598
interface tools, 665
intermittent problems, diagnosing, 92

capturing diagnostic data, 97–102
case study, 102–110
single-query versus server-wide problems,

93–96
internal concurrency issues, 391
internal XA transactions, 314
intra-row fragmentation, 198
introducers, 300
invalidation on read, 615
ionice, 626
iostat, 438–442, 591, 646
IP addresses, 560, 584
IP takeover, 583
ISNULL() function, 254

isolating columns, 159
isolation, 7
iterative optimization by benchmarking, 338

J
JMeter, 51
joins, 132, 234

decomposition, 209
execution strategy, 220
JOIN queries, 244
optimizers for, 223–226

journaling filesystems, 433
Joyent, 589

K
Karlsson, Anders, 510
Karwin, Bill, 256
Keep-Alive, 608
key block size, 353
key buffers, 351
key column, 729
key_buffer_size variable, 335, 351
key_len column, 729
Köhntopp, Kristian, 252
Kyte, Tom, 76

L
L-values, 250
lag, 484, 486, 507–511
Lahdenmaki, Tapio, 158, 204
LAST() function, 255
LAST_INSERT_ID() function, 239
latency, 38, 398, 576
LATEST DETECTED DEADLOCK, 697
LATEST FOREIGN KEY ERROR, 695
Launchpad, 64
lazy UNIONs, 254
LDAP authentication, 298
Leach, Mike, 158, 204
LEAST() function, 254
LEFT JOIN queries, 219
LEFT OUTER JOIN queries, 231
left-deep trees, 223
Leith, Mark, 712
LENGTH() function, 254, 304
lighttpd, 608
lightweight profiling, 76
LIMIT query, 218, 227, 246

Index | 779



limited replication bandwidth, 511
linear scalability, 524
“lint checking”, 249
Linux Virtual Server (LVS), 449, 556, 560
Linux-HA stack, 582
linuxthreads, 435
Little’s Law, 441
load balancers, 561
load balancing, 449, 555–565
LOAD DATA FROM MASTER command,

457
LOAD DATA INFILE command, 79, 301, 504,

508, 511, 600, 651
LOAD INDEX command, 272, 352
LOAD TABLE FROM MASTER command,

457
LOAD_FILE() function, 281
local caches, 612
local shared-memory caches, 613
locality of reference, 393
lock contention, 503
LOCK IN SHARE MODE command, 240
LOCK TABLES command, 11, 632
lock time, 626
lock waits, 735, 740–744
lock-all-tables variable, 457
lock-free InnoDB backups, 644
locks

debugging, 735–744
granularities, 4
implicit and explicit, 11
read/write, 4
row, 5
table, 5

log buffer, 358–361
log file coordinates, 456
log file size, 344, 358–361, 411
log positions, locating, 492
log servers, 481, 654
log threads, 702
log, InnoDB transaction, 703
logging, 10, 25
logical backups, 627, 637–639, 649–651
logical concurrency issues, 391
logical reads, 395
logical replication, 460
logical unit numbers (LUNs), 423
log_bin variable, 458

log_slave_updates variable, 453, 465, 468, 511,
635

LONGBLOB type, 122
LONGTEXT type, 122
lookup tables, 20
loose index scans, 235
lost time, 74
low latency, 389
LOW_PRIORITY hint, 238
Lua language, 53
Lucene, 313
LucidDB, 23
LUNs (logical unit numbers), 423
LVM snapshots, 434, 633, 640–648
lvremove command, 643
LVS (Linux Virtual Server), 449, 556, 560
lzo, 626

M
Maatkit (see Percona Toolkit)
maintenance operations, 271
malloc() function, 319
manual joins, 606
mapping tables, 20
MariaDB, 19, 484, 681
master and replicas, 468, 474, 564
master shutdown, unexpected, 495
master-data variable, 457
master-master in active-active mode, 469
master-master in active-passive mode, 471
master-master replication, 473, 505
master.info file, 459, 464, 489, 496
Master_Log_File, 491
MASTER_POS_WAIT() function, 495, 564
MATCH() function, 216, 306, 307, 311
materialized views, 138, 280
Matsunobu, Yoshinori, 581
MAX() function, 217, 237, 292
Maxia, Giuseppe, 282, 456, 512, 515, 518,

667
maximum system capacity, 521, 609
max_allowed_packet variable, 381
max_connections setting variable, 378
max_connect_errors variable, 381
max_heap_table_size setting variable, 378
mbox mailbox messages, 3
MBRCONTAINS() function, 157
McCullagh, Paul, 22
MD5() function, 53, 130, 156, 507

780 | Index



md5sum, 718
mean time between failures (MTBF), 569
mean time to recover (MTTR), 569–572, 576,

582, 586
measurement uncertainty, 72
MEDIUMBLOB type, 122
MEDIUMINT type, 117
MEDIUMTEXT type, 122
memcached, 533, 546, 613, 616
Memcached Access, 618
memory

allocating for caches, 349
configuring, 347–356
consumption formula for, 341
InnoDB buffer pool, 349
InnoDB data dictionary, 356
limits on, 347
memory-to-disk ratio, 397
MyISAM key cache, 351–353
per-connection needs, 348
pool, 704
reserving for operating system, 349
size, 595
Sphinx RAM, 751
table cache, 354
thread cache, 353

Memory storage engine, 20
Merge storage engine, 21
merge tables, 273–276
merged read and write requests, 440
mget() call, 616
MHA toolkit, 581
middleman solutions, 560–563, 584
migration, benchmarking after, 46
Millsap, Cary, 70, 74, 341
MIN() function, 217, 237, 292
Mininova.org, 764
mk-parallel-dump tool, 638
mk-parallel-restore tool, 638
mk-query-digest tool, 72
mk-slave-prefetch tool, 510
MLC (multi-level cell), 402, 407
MMM replication manager, 572, 580
mod_log_config variable, 79
MonetDB, 23
Monitis, 671
monitoring tools, 667–676
MONyog, 671
mpstat tool, 438

MRTG (Multi Router Traffic Grapher), 430,
669

MTBF (mean time between failures), 569
mtop tool, 672
MTTR (mean time to recovery), 569–572, 576,

582, 586
Mulcahy, Lachlan, 659
Multi Router Traffic Grapher (MRTG), 430,

669
multi-level cell (MLC), 402, 407
multi-query mechanism, 753
multicolumn indexes, 163
multiple disk volumes, 427
multiple partitioning keys, 537
multisource replication, 470, 480
multivalued attributes, 757, 761
Munin, 670
MVCC (multiversion concurrency control), 12,

551
my.cnf file, 452, 490, 501
.MYD file, 371, 633, 648
mydumper, 638, 659
.MYI file, 633, 648
MyISAM storage engine, 17

and backups, 631
concurrency configuration, 18, 373
and COUNT() queries, 242
data layout, 171
delayed key writes, 19
indexes, 18, 143
key block size, 353
key buffer/cache, 351–353, 690
performance, 19
tables, 19, 498

myisamchk, 629
myisampack, 276
mylvmbackup, 658, 659
MySQL

concurrency, 371–374
configuration mechanisms, 332–337
development model, 33
GPL-licensing, 33
logical architecture, 1
proprietary plugins, 33
Sandbox script, 456, 481
version history, 29–33, 182, 188

MySQL 5.1 Plugin Development (Golubchik &
Hutchings), 298

MySQL Benchmark Suite, 52, 55

Index | 781



MySQL Cluster, 577
MySQL Enterprise Backup, 457, 624, 627, 631,

658
MySQL Enterprise Monitor, 80, 670
MySQL Forge, 667, 710
MySQL High Availability (Bell et al.), 519
MySQL Stored Procedure Programming

(Harrison & Feuerstein), 282
MySQL Workbench Utilities, 665
mysql-bin.index file, 464
mysql-relay-bin.index file, 464
mysqladmin, 666, 686
mysqlbinlog tool, 460, 481, 492, 654
mysqlcheck tool, 629, 666
mysqld tool, 99, 344
mysqldump tool, 456, 488, 623, 627, 637, 660
mysqlhotcopy tool, 658
mysqlimport tool, 627, 651
mysqlslap tool, 51
mysql_query() function, 212, 292
mysql_unbuffered_query() function, 212
mytop tool, 672

N
Nagios, 668
Nagios System and Network Monitoring

(Barth), 643, 668
name locks, 736, 739
NAS (network-attached storage), 422–427
NAT (network address translation), 584
Native POSIX Threads Library (NPTL), 435
natural identifiers, 134
natural-language full-text searches, 306
NDB API, 619
NDB Cluster storage engine, 21, 535, 549, 550,

576
nesting cursors, 290
netcat, 717
network address translation (NAT), 584
network configuration, 429–431
network overhead, 202
network performance, 595
network provider, reliance on single, 572
network-attached storage (NAS), 422–427
New Relic, 77, 671
next-key locking, 17
NFS, SAN over, 424
Nginx, 608, 612
nice, 626

nines rule of availability, 567
Noach, Shlomi, 187, 666, 687, 710
nodes, 531, 538
non-SELECT queries, 721
nondeterministic statements, 499
nonrepeatable reads, 8
nonreplicated data, 501
nonsharded data, 538
nontransactional tables, 498
nonunique server IDs, 500
nonvolatile random access memory (NVRAM),

400
normalization, 133–136
NOT EXISTS() queries, 219, 232
NOT NULL, 116, 682
NOW() function, 316
NOW_USEC() function, 296, 513
NPTL (Native POSIX Threads Library), 435
NULL, 116, 133, 270
null hypothesis, 47
NULLIF() function, 254
NuoDB, 22
NVRAM (nonvolatile random access memory),

400

O
object versioning, 615
object-relational mapping (ORM) tool, 131,

148, 606
OCZ, 407
OFFSET variable, 246
OLTP (online transaction processing), 22, 38,

59, 478, 509, 596
on-controller cache (see RAID)
on-disk caches, 614
on-disk temporary tables, 122
online transaction processing (OLTP), 22, 38,

59, 478, 509, 596
open() function, 363
openark kit, 666
opened tables, 355
opening and locking partitions, 271
OpenNMS, 669
operating system

choosing an, 431
how to select CPUs for MySQL, 388
optimization, 387
status of, 438–444
what limits performance, 387

782 | Index



oprofile tool, 99–102, 111
Opsview, 668
optimistic concurrency control, 12
optimization, 3

(see also application-level optimization)
(see also query optimization)
BLOB workload, 375
DISTINCT queries, 244
filesort, 377
full-text indexes, 312
GROUP BY queries, 244, 752, 768
JOIN queries, 244
LIMIT and OFFSET, 246
OPTIMIZE TABLE command, 170, 310,

501
optimizer traces, 734
optimizer_prune_level, 240
optimizer_search_depth, 240
optimizer_switch, 241
prepared statements, 292
queries, 272
query cache, 327
query optimizer, 215–220
RAID performance, 415–417
ranking queries, 250
selects on Sahibinden.com, 767
server setting optimization, 331
sharded JOIN queries on Grouply.com,

769
for solid-state storage, 410–414
sorts, 193
SQL_CALC_FOUND_ROWS variable,

248
subqueries, 244
TEXT workload, 375
through profiling, 72–75, 91
UNION variable, 248

Optimizer
hints

DELAYED, 239
FOR UPDATE, 240
FORCE INDEX, 240
HIGH_PRIORITY, 238
IGNORE INDEX, 240
LOCK IN SHARE MODE, 240
LOW_PRIORITY, 238
SQL_BIG_RESULT, 239
SQL_BUFFER_RESULT, 239
SQL_CACHE, 239

SQL_CALC_FOUND_ROWS, 239
SQL_NO_CACHE, 239
SQL_SMALL_RESULT, 239
STRAIGHT_JOIN, 239
USE INDEX, 240

limitations of
correlated subqueries, 229–233
equality propogation, 234
hash joins, 234
index merge optimizations, 234
loose index scans, 235
MIN() and MAX(), 237
parallel execution, 234
SELECT and UPDATE on the Same

Table, 237
UNION limitations, 233

query, 214–227
complex queries versus many queries,

207
COUNT() aggregate function, 241
join decomposition, 209
limitations of MySQL, 229–238
optimizing data access, 202–207
reasons for slow queries, 201
restructuring queries, 207–209

Optimizing Oracle Performance (Millsap), 70,
341

options, 332
OQGraph storage engine, 23
Oracle Database, 408
Oracle development milestones, 33
Oracle Enterprise Linux, 432
Oracle GoldenGate, 516
ORDER BY queries, 163, 182, 226, 253
order processing, 26
ORM (object-relational mapping), 148, 606
OurDelta, 683
out-of-sync replicas, 488
OUTER JOIN queries, 221
outer joins, 216
outliers, 74
oversized packets, 511
O_DIRECT variable, 362
O_DSYNC variable, 363

P
Pacemaker, 560, 582
packed indexes, 184
packed tables, 19

Index | 783



PACK_KEYS variable, 184
page splits, 170
paging, 436
PAM authentication, 298
parallel execution, 234
parallel result sets, 753
parse tree, 3
parser, 214
PARTITION BY variable, 265, 270
partitioning, 415

across multiple nodes, 531
how to use, 268
keys, 535
with replication filters, 564
sharding, 533–547, 565, 755
tables, 265–276, 329
types of, 267

passive caches, 611
Patricia tries, 158
PBXT, 22
PCIe cards, 400, 406
Pen, 556
per-connection memory needs, 348
per-connection needs, 348
percent() function, 676
percentile response times, 38
Percona InnoDB Recovery Toolkit, 657
Percona Server, 598, 679, 711

BLOB and TEXT types, 122
buffer pool, 711
bypassing operating system caches, 344
corrupted tables, 657
doublewrite buffer, 411
enhanced slow query log, 89
expand_fast_index_creation, 198
extended slow query log, 323, 330
fast warmup features, 351, 563, 598
FNV64() function, 157
HandlerSocket plugin, 297
idle transaction timeout parameter, 744
INFORMATION_SCHEMA.INDEX_STA

TISTICS table, 187
innobd_use_sys_stats_table option, 197
InnoDB online text creation, 144
innodb_overwrite_relay_log_info option,

383
innodb_read_io_threads option, 702
innodb_recovery_stats option, 359
innodb_use_sys_stats_table option, 356

innodb_write_io_threads option, 702
larger log files, 411
lazy page invalidation, 366
limit data dictionary size, 356, 711
mutex issues, 384
mysqldump, 628
object-level usage statistics, 110
query-level instrumentation, 73
read-ahead, 412
replication, 484, 496, 508, 516
slow query log, 74, 80, 84, 89, 95
stripping query comments, 316
temporary tables, 689, 711
user statistics tables, 711

Percona Toolkit, 666
Aspersa, 666
Maatkit, 658, 666
mk-parallel-dump tool, 638
mk-parallel-restore tool, 638
mk-query-digest tool, 72
mk-slave-prefetch tool, 510
pt-archiver, 208, 479, 504, 545, 553
pt-collect, 99, 442
pt-deadlock-logger, 697
pt-diskstats, 45, 442
pt-duplicate-key-checker, 187
pt-fifo-split, 651
pt-find, 502
pt-heartbeat, 476, 487, 492, 559
pt-index-usage, 187
pt-kill, 744
pt-log-player, 340
pt-mext, 347, 687
pt-mysql-summary, 100, 103, 347, 677
pt-online-schema-change, 29
pt-pmp, 99, 101, 390
pt-query-advisor, 249
pt-query-digest, 375, 507, 563

extracting from comments, 79
profiling, 72–75
query log, 82–84
slow query logging, 90, 95, 340

pt-sift, 100, 442
pt-slave-delay, 516, 634
pt-slave-restart, 496
pt-stalk, 98, 99, 442
pt-summary, 100, 103, 677
pt-table-checksum, 488, 495, 519, 634
pt-table-sync, 489

784 | Index



pt-tcp-model, 611
pt-upgrade, 187, 241, 570, 734
pt-visual-explain, 733

Percona tools, 52, 64–66, 195
Percona XtraBackup, 457, 624, 627, 631, 648,

658
Percona XtraDB Cluster, 516, 549, 577–580,

680
performance optimization, 69–72, 107

plotting metrics, 49
profiling, 72–75
SAN, 424
views and, 279

Performance Schema, 90
Perl scripts, 572
Perldoc, 662
perror utility, 355
persistent connections, 561, 607
persistent memory, 597
pessimistic concurrency control, 12
phantom reads, 8
PHP profiling tools, 77
phpMyAdmin tool, 666
phrase proximity ranking, 759
phrase searches, 309
physical reads, 395
physical size of disk, 399
pigz tool, 626
“pileups”, 69
Pingdom, 671
pinging, 606, 689
Planet MySQL blog aggregator, 667
planned promotions, 490
plugin-specific variables, 692
plugins, 297
point-in-time recovery, 625, 652
poor man’s profiler, 101
port forwarding, 584
possible_keys column, 729
post-mortems, 571
PostgreSQL, 258
potential cache size, 323
power grid, 572
preferring a join, 244
prefix indexes, 160–163
prefix-compressed indexes, 184
preforking, 608
pregenerating content, 617
prepared statements, 291–295, 329

preprocessor, 214
Preston, W. Curtis, 621
primary key, 17, 173–176
PRIMARY KEY constraint, 185
priming the cache, 509
PROCEDURE ANALYSE command, 297
procedure plugins, 297
processor speed, 392
profiling

and application speed, 76
applications, 75–80
diagnosing intermittent problems, 92–110
interpretation, 74
MySQL queries, 80–84
optimization through, 72–75, 91
single queries, 84–91
tools, 72, 110–112

promotions of replicas, 491, 583
propagation of changes, 584
proprietary plugins, 33
proxies, 556, 584, 609
pruning, 270
pt-archiver tool, 208, 479, 504, 545, 553
pt-collect tool, 99, 442
pt-deadlock-logger tool, 697
pt-diskstats tool, 45, 442
pt-duplicate-key-checker tool, 187
pt-fifo-split tool, 651
pt-find tool, 502
pt-heartbeat tool, 476, 487, 492, 559
pt-index-usage tool, 187
pt-kill tool, 744
pt-log-player tool, 340
pt-mext tool, 347, 687
pt-mysql-summary tool, 100, 103, 347, 677
pt-online-schema-change tool, 29
pt-pmp tool, 99, 101, 390
pt-query-advisor tool, 249
pt-query-digest (see Percona Toolkit)
pt-sift tool, 100, 442
pt-slave-delay tool, 516, 634
pt-slave-restart tool, 496
pt-stalk tool, 98, 99, 442
pt-summary tool, 100, 103, 677
pt-table-checksum tool, 488, 495, 519, 634
pt-table-sync tool, 489
pt-tcp-model tool, 611
pt-upgrade tool, 187, 241, 570, 734
pt-visual-explain tool, 733

Index | 785



PURGE MASTER LOGS command, 369, 464,
486

purging old binary logs, 636
pushdown joins, 550, 577

Q
Q mode, 673
Q4M storage engine, 23
Qcache_lowmem_prunes variable, 325
query cache, 214, 315, 330, 690

alternatives to, 328
configuring and maintaining, 323–325
InnoDB and the, 326
memory use, 318
optimizations, 327
when to use, 320–323

query execution
MySQL client/server protocol, 210–213
optimization process, 214
query cache, 214, 315–328

query execution engine, 228
query logging, 95
query optimization, 214–227

complex queries versus many queries, 207
COUNT() aggregate function, 241
join decomposition, 209
limitations of MySQL, 229–238
optimizing data access, 202–207
reasons for slow queries, 201
restructuring queries, 207–209

query states, 213
query-based splits, 557
querying across shards, 537
query_cache_limit variable, 324
query_cache_min_res_unit value variable, 324
query_cache_size variable, 324, 336
query_cache_type variable, 323
query_cache_wlock_invalidate variable, 324
queue scheduler, 434
queue tables, 256
queue time, 204
quicksort, 226

R
R-Tree indexes, 157
Rackspace Cloud, 589
RAID

balancing hardware and software, 418

configuration and caching, 419–422
failure, recovery, and monitoring, 417
moving files from flash to, 411
not for backup, 624
performance optimization, 415–417
splits, 647
with SSDs, 405

RAND() function, 160, 724
random read-ahead, 412
random versus sequential I/O, 394
RANGE COLUMNS type, 268
range conditions, 192
raw file

backup, 627
restoration, 648

RDBMS technology, 400
RDS (Relational Database Service), 589, 600
read buffer size, 343
READ COMMITTED isolation level, 8, 13
read locks, 4, 189
read threads, 703
READ UNCOMMITTED isolation level, 8, 13
read-ahead, 412
read-around writes, 353
read-mostly tables, 26
read-only variable, 26, 382, 459, 479
read-write splitting, 557
read_buffer_size variable, 336
Read_Master_Log_Pos, 491
read_rnd_buffer_size variable, 336
real number data types, 118
rebalancing shards, 544
records_in_range() function, 195
recovery

from a backup, 647–658
defined, 622
defining requirements, 623
more advanced techniques, 653

recovery point objective (RPO), 623, 625
recovery time objective (RTO), 623, 625
Red Hat, 432, 683
Redis, 620
redundancy, replication-based, 580
Redundant Array of Inexpensive Disks (see

RAID)
redundant indexes, 185–187
ref column, 730

786 | Index



Relational Database Index Design and the
Optimizers (Lahdenmaki & Leach),
158, 204

Relational Database Service (RDS), Amazon,
589, 600

relay log, 450, 496
relay-log.info file, 464
relay_log variable, 453, 459
relay_log_purge variable, 459
relay_log_space_limit variable, 459, 511
RELEASE_LOCK() function, 256
reordering joins, 216
REORGANIZE PARTITION command, 271
REPAIR TABLE command, 144, 371
repairing MyISAM tables, 18
REPEATABLE READ isolation level, 8, 13,

632
replica hardware, 414
replica shutdown, unexpected, 496
replicate_ignore_db variable, 478
replication, 447, 634

administration and maintenance, 485
advanced features in MySQL, 514
backing up configuration, 630
and capacity planning, 482–485
changing masters, 489–494
checking consistency of, 487
checking for up-to-dateness, 565
configuring master and replica, 452
creating accounts for, 451
custom solutions, 477–482
filtering, 466, 564
how it works, 449
initializing replica from another server, 456
limitations, 512
master and multiple replicas, 468
master, distribution master, and replicas,

474
master-master in active-active mode, 469
master-master in active-passive mode, 471
master-master with replicas, 473
measuring lag, 486
monitoring, 485
other technologies, 516
problems and solutions, 495–512
problems solved by, 448
promotions of replicas, 491, 583
recommended configuration, 458
replica consistency with master, 487

replication files, 463
resyncing replica from master, 488
ring, 473
row-based, 447, 460–463
sending events to other replicas, 465
setting up, 451
speed of, 512–514
splitting reads and writes in, 557
starting the replica, 453–456
statement-based, 447, 460–463
status, 708
switching master-master configuration

roles, 494
topologies, 468, 490
tree or pyramid, 476

REPLICATION CLIENT privilege, 452
REPLICATION SLAVE privilege, 452
replication-based redundancy, 580
RESET QUERY CACHE command, 325
RESET SLAVE command, 490
resource consumption, 70
response time, 38, 69, 204
restoring

defined, 622
logical backups, 649–651

RethinkDB, 22
ring replication, 473
ROLLBACK command, 499
round-robin database (RRD) files, 669
row fragmentation, 198
row locks, 5, 12
ROW OPERATIONS, 705
row-based logging, 636
row-based replication, 447, 460–463
rows column, 731
rows examined, number of, 205
rows returned, number of, 205
ROW_COUNT command, 287
RPO (recovery point objective), 623, 625
RRDTool, 669
rsync, 195, 456, 717, 718
RTO (recovery time objective), 623, 625
running totals and averages, 255

S
safety and sanity settings, 380–383
Sahibinden.com, 767
SandForce, 407
SANs (storage area networks), 422–427

Index | 787



sar, 438
sargs, 166
SATA SSDs, 405
scalability, 521

by clustering, 548
by consolidation, 547
frequency, 392
and load balancing, 555
mathematical definition, 523
multiple CPUs/cores, 391
planning for, 527
preparing for, 528
“scale-out” architecture, 447
scaling back, 552
scaling out, 531–547
scaling pattern, 391
scaling up, 529
scaling writes, 483
Sphinx, 754
universal law of, 525–527

scalability measurements, 39
ScaleArc, 547, 549
ScaleBase, 547, 549, 551, 594
ScaleDB, 407, 574
scanning data, 269
scheduled tasks, 504
schemas, 13

changes, 29
design, 131
normalized and denormalized, 135

Schooner Active Cluster, 549
scope, 333
scp, 716
search engine, selecting the right, 24–28
search space, 226
searchd, Sphinx, 746, 754, 756–766
secondary indexes, 17, 656
security, connection management, 2
sed, 638
segmented key cache, 19
segregating hot data, 269
SELECT command, 237, 267, 721
SELECT FOR UPDATE command, 256, 287
SELECT INTO OUTFILE command, 301, 504,

508, 600, 638, 651, 657
SELECT types, 690
selective replication, 477
selectivity, index, 160
select_type column, 724

SEMAPHORES, 693
sequential versus random I/O, 394
sequential writes, 576
SERIALIZABLE isolation level, 8, 13
serialized writes, 509
server, 685

adding/removing, 563
configuration, backing up, 630
consolidation, 425
INFORMATION_SCHEMA database, 711
MySQL configuration, 332
PERFORMANCE_SCHEMA database,

712
profiling and speed of, 76, 80
server-wide problems, 93–96
setting optimization, 331
SHOW ENGINE INNODB MUTEX

command, 707–709
SHOW ENGINE INNODB STATUS

command, 692–706
SHOW PROCESSLIST command, 706
SHOW STATUS command, 686–692
status variables, 346
workload profiling, 80

server-side prepared statements, 295
service time, 204
session scope, 333
session-based splits, 558
SET CHARACTER SET command, 300
SET GLOBAL command, 494
SET GLOBAL SQL_SLAVE_SKIP_COUNTER

command, 654
SET NAMES command, 300
SET NAMES utf8 command, 300, 606
SET SQL_LOG_BIN command, 503
SET TIMESTAMP command, 635
SET TRANSACTION ISOLATION LEVEL

command, 11
SET type, 128, 130
SetLimits() function, 748, 764
SetMaxQueryTime() function, 764
SeveralNines, 550, 577
SHA1() function, 53, 130, 156
Shard-Query system, 547
sharding, 533–547, 565, 755
shared locks, 4
shared storage, 573–576
SHOW BINLOG EVENTS command, 486,

708

788 | Index



SHOW commands, 255
SHOW CREATE TABLE command, 117, 163
SHOW CREATE VIEW command, 280
SHOW ENGINE INNODB MUTEX

command, 695, 707–709
SHOW ENGINE INNODB STATUS

command, 97, 359, 366, 384, 633,
692–706, 740

SHOW FULL PROCESSLIST command, 81,
700

SHOW GLOBAL STATUS command, 88, 93,
346, 686

SHOW INDEX command, 197
SHOW INDEX FROM command, 196
SHOW INNODB STATUS command (see

SHOW ENGINE INNODB STATUS
command)

SHOW MASTER STATUS command, 452,
457, 486, 490, 558, 630, 643

SHOW PROCESSLIST command, 94–96, 256,
289, 606, 706

SHOW PROFILE command, 85–89
SHOW RELAYLOG EVENTS command, 708
SHOW SLAVE STATUS command, 453, 457,

486, 491, 558, 630, 708
SHOW STATUS command, 88, 352
SHOW TABLE STATUS command, 14, 197,

365, 672
SHOW VARIABLES command, 352, 685
SHOW WARNINGS command, 222, 277
signed types, 117
single-component benchmarking, 37, 51
single-level cell (SLC), 402, 407
single-shard queries, 535
single-transaction variable, 457, 632
skip_innodb variable, 476
skip_name_resolve variable, 381, 429, 570
skip_slave_start variable, 382, 459
slavereadahead tool, 510
slave_compressed_protocol variable, 475, 511
slave_master_info variable, 383
slave_net_timeout variable, 382
Slave_open_temp_tables variable, 503
SLC (single-level cell), 402, 407
Sleep state, 607
SLEEP() function, 256, 682, 737
sleeping before entering queue, 373
slots, 694
slow queries, 71, 74, 80, 89, 109, 321

SMALLBLOB type, 122
SMALLINT type, 117
SMALLTEXT type, 122
Smokeping tool, 430
snapshots, 457, 624, 640–648
Solaris SPARC hardware, 431
Solaris ZFS filesystem, 431
solid-state drives (SSD), 147, 268, 361, 404
solid-state storage, 400–414
sort buffer size, 343
sort optimizations, 226, 691
sorting, 193
sort_buffer_size variable, 336
Souders, Steve, 608
SourceForge, 52
SPARC hardware, 431
spatial indexes, 157
Sphinx, 313, 619, 745, 770

advanced performance control, 763
applying WHERE clauses, 750
architectural overview, 756–758
efficient and scalable full-text searching,

749
filtering, 761
finding top results in order, 751
geospatial search functions, 262
installation overview, 757
optimizing GROUP BY queries, 752, 768
optimizing selects on Sahibinden.com, 767
optimizing sharded JOIN queries on

Grouply.com, 769
phrase proximity ranking, 759
searching, 746–748
special features, 759–764
SphinxSE, 756, 759, 761, 767
support for attributes, 760
typical partition use, 758

Spider storage engine, 24
spin-wait, 695
spindle rotation speed, 399
splintering, 533–547
split-brain syndrome, 575, 578
splitting reads and write in replication, 557
Splunk, 671
spoon-feeding, 608
SQL and Relational Theory (Date), 255
SQL Antipatterns (Karwin), 256
SQL dumps, 637
SQL interface prepared statements, 295

Index | 789



SQL slave thread, 450
SQL statements, 638
SQL utilities, 667
sql-bench, 52
SQLyog tool, 665
SQL_BIG_RESULT hint, 239, 245
SQL_BUFFER_RESULT hint, 239
SQL_CACHE hint, 239
SQL_CACHE variable, 321, 328
SQL_CALC_FOUND_ROWS hint, 239
SQL_CALC_FOUND_ROWS variable, 248
sql_mode, 382
SQL_MODE configuration variable, 245
SQL_NO_CACHE hint, 239
SQL_NO_CACHE variable, 328
SQL_SMALL_RESULT hint, 239, 245
Squid, 608
SSD (solid-state drives), 147, 268, 361, 404
SSH, 716
staggering numbers, 505
stale-data splits, 557
“stalls”, 69
Starkey, Jim, 22
START SLAVE command, 654
START SLAVE UNTIL command, 654
start-position variable, 498
statement handles, 291
statement-based replication, 447, 460–463
static optimizations, 216
static query analysis, 249
STEC, 407
STONITH, 584
STOP SLAVE command, 487, 490, 498
stopwords, 306, 312
storage area networks (SANs), 422–427
storage capacity, 399
storage consolidation, 425
storage engine API, 2
storage engines, 13, 23–28

Archive, 19
Blackhole, 20
column-oriented, 22
community, 23
and consistency, 633
CSV, 20
Falcon, 22
Federated, 20
InnoDB, 15
Memory, 20

Merge, 21
mixing, 11, 500
MyISAM, 18
NDB Cluster, 21
OLTP, 22
ScaleDB, 574
XtraDB, 680

stored code, 282–284, 289
Stored Procedure Library, 667
stored procedures and functions, 284
stored routines, 282, 329
strace tool, 99, 111
STRAIGHT_JOIN hint, 224, 239
string data types, 119–125, 130
string locks, 736
stripe chunk size, 420
subqueries, 218, 244
SUBSTRING() function, 122, 304, 375
sudo rules, 630
SUM() function, 139
summary tables, 136
Super Smack, 52
surrogate keys, 173
Swanhart, Justin, 138, 280, 547
swapping, 436, 444
switchover, 582
synchronization, two-way, 287
synchronous MySQL replication, 576–580
sync_relay_log variable, 383
sync_relay_log_info variable, 383
sysbench, 39, 53, 56–61, 419, 426, 598
SYSDATE() function, 382
sysdate_is_now variable, 382
system of record approach, 517
system performance, benchmarking, 44
system under test (SUT), 44
system variables, 685

T
table definition cache, 356
tables

building a queue, 256
cache memory, 354
column, 724–727
conversions, 28
derived, 238, 277, 725
finding and repairing corruption, 194
INFORMATION_SCHEMA in Percona

Server, 711

790 | Index



locks, 5, 692, 735–738
maintenance, 194–198
merge, 273–276
partitioned, 265–276, 329
reducing to an MD5 hash value, 255
SELECT and UPDATE on, 237
SHOW TABLE STATUS output, 14
splitting, 554
statistics, 220
tablespaces, 16, 364
views, 276–280

table_cache_size variable, 335, 379
tagged cache, 615
TCP, 556, 583
tcpdump tool, 81, 95, 99
tcp_max_syn_backlog variable, 430
temporal computations, 125
temporary files and tables, 21, 502, 689, 711
TEMPTABLE algorithm, 277
Texas Memory Systems, 407
TEXT type, 21, 121, 122
TEXT workload, optimizing for, 375
Theory of Constraints, 526
third-party storage engines, 21
thread and connection statistics, 688
thread cache memory, 353
threaded discussion forums, 27
threading, 213, 435
Threads_connected variable, 354, 596
Threads_created variable, 354
Threads_running variable, 596
thread_cache_size variable, 335, 354, 379
throttling variables, 627
throughput, 38, 70, 398, 576
tickets, 373
time to live (TTL), 614
time-based data partitioning, 554
TIMESTAMP type, 117, 126, 631
TIMESTAMPDIFF() function, 513
TINYBLOB type, 122
TINYINT type, 117
TINYTEXT type, 122
Tkachenko, Vadim, 405
tmp_table_size setting, 378
TokuDB, 22, 158
TO_DAYS() function, 268
TPC Benchmarks

dbt2, 61
TPC-C, 52

TPC-H, 41
TPCC-MySQL tool, 52, 64–66

transactional tables, 499
transactions, 24

ACID test, 6
deadlocks, 9
InnoDB, 366, 699
isolation levels, 7
logging, 10
in MySQL, 10
and storage engines, 24

transfer speed, 398
transferring large files, 715–718
transparency, 556, 578, 611
tree or pyramid replication, 476
tree-formatted output, 733
trial-and-error troubleshooting, 92
triggers, 97, 282, 286
TRIM command, 404
Trudeau, Yves, 262
tsql2mysql tool, 282
TTL (time to live), 614
tunefs, 433
Tungsten Replicator, Continuent, 481, 516
“tuning”, 340
turbo boost technology, 392
type column, 727

U
Ubuntu, 683
UDF Library, 667
UDFs, 262, 295
unarchiving, 553
uncommitted data, 8
uncompressed files, 715
undefined server IDs, 501
underutilization, 485
UNHEX() function, 130
UNION ALL query, 248
UNION limitations, 233
UNION query, 220, 248, 254, 724–727
UNION syntax, 274
UNIQUE constraint, 185
unit of sharding, 535
Universal Scalability Law (USL), 525–527
Unix, 332, 432, 504, 582, 630
UNIX_TIMESTAMP() function, 126
UNLOCK TABLES command, 12, 142, 643
UNSIGNED attribute, 117

Index | 791



“unsinkable” systems, 573
unused indexes, 187
unwrapping, 255
updatable views, 278
UPDATE command, 237, 267, 278
UPDATE RETURNING command, 252
upgrades

replication before, 449
validating MySQL, 241

USE INDEX hint, 240
user logs, 740
user optimization issues, 39, 166
user statistics tables, 711
user-defined functions (UDFs), 262, 295
user-defined variables, 249–255
USER_STATISTICS tables, 110
“Using filesort” value, 733
“Using index” value, 733
USING query, 218
“Using temporary” value, 733
“Using where” value, 733
USL (Universal Scalability Law), 525–527
UTF-8, 298, 303
utilities, SQL, 667
UUID() function, 130, 507, 546
UUID_SHORT() function, 546

V
Valgrind, 78
validating MySQL upgrades, 241
VARCHAR type, 119, 124, 131, 513
variables, 332

assignments in statements, 255
setting dynamically, 335–337
user-defined, 249–255

version-based splits, 558
versions

and full-text searching, 310
history of MySQL, 29–33
improvements in MySQL 5.6, 734
old row, 366
replication before upgrading, 449
version-specific comments, 289

vgdisplay command, 642
views, 276–280, 329
Violin Memory, 407
Virident, 403, 409
virtual IP addresses, 560, 583
virtualization, 548

vmstat tool, 436, 438, 442, 591, 646
volatile memory, 597
VoltDB, 549
volume groups, 641
VPForMySQL storage engine, 24

W
Wackamole, 556
waiters flag, 694
warmup, 351, 573
wear leveling, 401
What the Dog Saw (Gladwell), 571
WHERE clauses, 255, 750
whole number data types, 117
Widenius, Monty, 679, 681
Windows, 504
WITH ROLLUP variable, 246
Workbench Utilities, MySQL, 665, 666
working concurrency, 39
working sets of data, 395, 597
workload-based configuration, 375–377
worst-case selectivity, 162
write amplification, 401
write cache and power failure, 405
write locks, 4, 189
write synchronization, 565
write threads, 703
write-ahead logging, 10, 395
write-invalidate policy, 614
write-set replication, 577
write-update, 614
writes, scaling, 483
WriteThrough vs. WriteBack, 418

X
X-25E drives, 404
X.509 certificates, 2
x86 architecture, 390, 431
XA transactions, 314, 330
xdebug, 78
Xeround, 549, 602
xhprof tool, 77
XtraBackup, Percona, 457, 624, 627, 631, 648,

658
XtraDB Cluster, Percona, 516, 549, 577–580,

680

792 | Index



Y
YEAR() function, 268, 270

Z
Zabbix, 668
Zenoss, 669
ZFS filer, 631, 640
ZFS filesystem, 408, 431
zlib, 19, 511
Zmanda Recovery Manager (ZRM), 659

Index | 793


